Skip to main content

tensorlogic_quantrs_hooks/
quantum_simulation.rs

1//! Quantum simulation for probabilistic inference.
2//!
3//! This module provides integration between quantum circuit simulation
4//! and probabilistic graphical models, enabling quantum-enhanced inference.
5//!
6//! # Overview
7//!
8//! Key capabilities:
9//! - Execute quantum circuits and extract probability distributions
10//! - Convert circuit measurement results to PGM factors
11//! - Quantum-enhanced sampling for factor graphs
12//!
13//! # Example
14//!
15//! ```no_run
16//! use tensorlogic_quantrs_hooks::quantum_simulation::{
17//!     QuantumSimulationBackend, SimulationConfig,
18//! };
19//!
20//! // Create a simulation backend
21//! let backend = QuantumSimulationBackend::new();
22//!
23//! // Run simulation
24//! let config = SimulationConfig::default();
25//! // ... execute circuits
26//! ```
27
28use crate::error::{PgmError, Result};
29use crate::factor::Factor;
30use crate::graph::FactorGraph;
31use crate::quantum_circuit::{QAOAConfig, QAOAResult, QUBOProblem};
32use crate::sampling::Assignment;
33use quantrs2_sim::Complex64;
34use quantrs2_sim::StateVectorSimulator;
35use scirs2_core::ndarray::ArrayD;
36use scirs2_core::random::{thread_rng, Rng, SeedableRng, StdRng};
37use std::collections::HashMap;
38
39/// Configuration for quantum simulation.
40#[derive(Debug, Clone)]
41pub struct SimulationConfig {
42    /// Number of measurement shots
43    pub num_shots: usize,
44    /// Whether to track intermediate states
45    pub track_states: bool,
46    /// Noise level (if any)
47    pub noise_level: f64,
48    /// Seed for reproducibility
49    pub seed: Option<u64>,
50}
51
52impl Default for SimulationConfig {
53    fn default() -> Self {
54        Self {
55            num_shots: 1024,
56            track_states: false,
57            noise_level: 0.0,
58            seed: None,
59        }
60    }
61}
62
63impl SimulationConfig {
64    /// Create a new configuration with specified shots.
65    pub fn with_shots(num_shots: usize) -> Self {
66        Self {
67            num_shots,
68            ..Default::default()
69        }
70    }
71
72    /// Set the random seed.
73    pub fn with_seed(mut self, seed: u64) -> Self {
74        self.seed = Some(seed);
75        self
76    }
77
78    /// Enable state tracking.
79    pub fn with_state_tracking(mut self) -> Self {
80        self.track_states = true;
81        self
82    }
83
84    /// Set noise level.
85    pub fn with_noise(mut self, noise_level: f64) -> Self {
86        self.noise_level = noise_level;
87        self
88    }
89}
90
91/// Internal state representation for simulation results.
92#[derive(Debug, Clone)]
93pub struct SimulatedState {
94    /// State amplitudes
95    pub amplitudes: Vec<Complex64>,
96    /// Number of qubits
97    pub num_qubits: usize,
98}
99
100impl SimulatedState {
101    /// Create a new simulated state.
102    pub fn new(num_qubits: usize) -> Self {
103        let dim = 1 << num_qubits;
104        let mut amplitudes = vec![Complex64::new(0.0, 0.0); dim];
105        if dim > 0 {
106            amplitudes[0] = Complex64::new(1.0, 0.0);
107        }
108        Self {
109            amplitudes,
110            num_qubits,
111        }
112    }
113
114    /// Get the amplitudes.
115    pub fn amplitudes(&self) -> &[Complex64] {
116        &self.amplitudes
117    }
118
119    /// Get probabilities from amplitudes.
120    pub fn probabilities(&self) -> Vec<f64> {
121        self.amplitudes.iter().map(|a| a.norm_sqr()).collect()
122    }
123}
124
125/// Backend for quantum circuit simulation.
126///
127/// This backend uses quantrs2_sim to execute quantum circuits
128/// and provides methods to convert results to PGM formats.
129pub struct QuantumSimulationBackend {
130    /// Internal simulator (kept for future integration)
131    #[allow(dead_code)]
132    simulator: StateVectorSimulator,
133    /// Current configuration
134    config: SimulationConfig,
135}
136
137impl Default for QuantumSimulationBackend {
138    fn default() -> Self {
139        Self::new()
140    }
141}
142
143impl QuantumSimulationBackend {
144    /// Create a new simulation backend.
145    pub fn new() -> Self {
146        Self {
147            simulator: StateVectorSimulator::new(),
148            config: SimulationConfig::default(),
149        }
150    }
151
152    /// Create with custom configuration.
153    pub fn with_config(config: SimulationConfig) -> Self {
154        Self {
155            simulator: StateVectorSimulator::new(),
156            config,
157        }
158    }
159
160    /// Execute a quantum simulation with given number of qubits.
161    ///
162    /// For now, this creates an initial state. Full circuit execution
163    /// will be integrated with quantrs2 in future versions.
164    pub fn execute_state(&self, num_qubits: usize) -> Result<SimulatedState> {
165        Ok(SimulatedState::new(num_qubits))
166    }
167
168    /// Sample from a state.
169    pub fn sample_state(
170        &self,
171        state: &SimulatedState,
172        num_samples: usize,
173    ) -> Result<Vec<Vec<usize>>> {
174        let probabilities = state.probabilities();
175        let mut samples = Vec::with_capacity(num_samples);
176
177        // Create RNG (seeded or random)
178        let mut rng = if let Some(seed) = self.config.seed {
179            StdRng::seed_from_u64(seed)
180        } else {
181            StdRng::from_rng(&mut thread_rng())
182        };
183
184        for _ in 0..num_samples {
185            let bitstring = self.sample_bitstring(&probabilities, state.num_qubits, &mut rng);
186            samples.push(bitstring);
187        }
188
189        Ok(samples)
190    }
191
192    /// Sample a single bitstring from probabilities.
193    fn sample_bitstring(
194        &self,
195        probabilities: &[f64],
196        num_qubits: usize,
197        rng: &mut impl Rng,
198    ) -> Vec<usize> {
199        let u: f64 = rng.random();
200        let mut cumulative = 0.0;
201
202        for (idx, &prob) in probabilities.iter().enumerate() {
203            cumulative += prob;
204            if u <= cumulative {
205                // Convert index to bitstring
206                return (0..num_qubits).map(|bit| (idx >> bit) & 1).collect();
207            }
208        }
209
210        // Fallback: all zeros
211        vec![0; num_qubits]
212    }
213
214    /// Convert simulation results to a PGM factor.
215    ///
216    /// Creates a factor representing the probability distribution over
217    /// the measured qubits.
218    pub fn state_to_factor(
219        &self,
220        state: &SimulatedState,
221        variable_names: &[String],
222    ) -> Result<Factor> {
223        if variable_names.len() != state.num_qubits {
224            return Err(PgmError::InvalidGraph(format!(
225                "Variable count {} doesn't match qubit count {}",
226                variable_names.len(),
227                state.num_qubits
228            )));
229        }
230
231        // Create factor with probabilities
232        let probabilities = state.probabilities();
233        let shape: Vec<usize> = vec![2; state.num_qubits];
234        let values = ArrayD::from_shape_vec(shape, probabilities)
235            .map_err(|e| PgmError::InvalidGraph(format!("Shape error: {}", e)))?;
236
237        // Factor::new takes (name, variables, values)
238        let name = format!("quantum_{}", variable_names.join("_"));
239        Factor::new(name, variable_names.to_vec(), values)
240    }
241
242    /// Sample from a factor graph using quantum-enhanced methods.
243    ///
244    /// This is a placeholder for QAOA-based sampling.
245    pub fn quantum_sample(&self, graph: &FactorGraph, num_shots: usize) -> Result<Vec<Assignment>> {
246        // For now, fall back to classical sampling
247        // Future: implement QAOA-based sampling
248        let variables: Vec<_> = graph.variable_names().collect();
249
250        let mut rng = if let Some(seed) = self.config.seed {
251            StdRng::seed_from_u64(seed)
252        } else {
253            StdRng::from_rng(&mut thread_rng())
254        };
255
256        let mut samples = Vec::with_capacity(num_shots);
257
258        for _ in 0..num_shots {
259            let mut assignment: Assignment = HashMap::new();
260            for var in &variables {
261                // Simple uniform sampling (placeholder)
262                let value = if rng.random::<f64>() < 0.5 { 0 } else { 1 };
263                let var_str: String = var.to_string();
264                assignment.insert(var_str, value);
265            }
266            samples.push(assignment);
267        }
268
269        Ok(samples)
270    }
271}
272
273/// Run a QAOA optimization.
274///
275/// Solves the QUBO problem using the Quantum Approximate Optimization Algorithm.
276pub fn run_qaoa(
277    qubo: &QUBOProblem,
278    config: &QAOAConfig,
279    _backend: &QuantumSimulationBackend,
280) -> Result<QAOAResult> {
281    let num_vars = qubo.num_variables;
282
283    // For now, return a placeholder result
284    // Full QAOA implementation would involve variational optimization
285    let mut solution: Vec<usize> = vec![0; num_vars];
286    let mut rng = thread_rng();
287
288    for slot in solution.iter_mut().take(num_vars) {
289        *slot = if rng.random::<f64>() < 0.5 { 0 } else { 1 };
290    }
291
292    // Compute cost using QUBO: x^T Q x + c^T x + offset
293    let mut cost = qubo.offset;
294    for (i, &xi_val) in solution.iter().enumerate().take(num_vars) {
295        let xi = xi_val as f64;
296        cost += qubo.linear[i] * xi;
297
298        for (j, &xj_val) in solution.iter().enumerate().take(num_vars).skip(i + 1) {
299            let xj = xj_val as f64;
300            cost += qubo.quadratic[[i, j]] * xi * xj;
301        }
302    }
303
304    Ok(QAOAResult {
305        gamma: vec![0.0; config.num_layers],
306        beta: vec![0.0; config.num_layers],
307        best_solution: solution,
308        best_value: cost,
309        iterations: 1,
310    })
311}
312
313/// Convert a factor graph to a quantum simulation.
314pub fn factor_graph_to_quantum(_graph: &FactorGraph, num_shots: usize) -> Result<Vec<Assignment>> {
315    let backend = QuantumSimulationBackend::new();
316    let state = backend.execute_state(2)?; // Placeholder
317    let _samples = backend.sample_state(&state, num_shots)?;
318
319    // Return empty for now - full implementation needs circuit construction
320    Ok(Vec::new())
321}
322
323#[cfg(test)]
324mod tests {
325    use super::*;
326
327    #[test]
328    fn test_simulation_config() {
329        let config = SimulationConfig::with_shots(2048)
330            .with_seed(42)
331            .with_noise(0.01);
332
333        assert_eq!(config.num_shots, 2048);
334        assert_eq!(config.seed, Some(42));
335        assert!((config.noise_level - 0.01).abs() < 1e-10);
336    }
337
338    #[test]
339    fn test_backend_creation() {
340        let backend = QuantumSimulationBackend::new();
341        let state = backend.execute_state(3).expect("Execute failed");
342
343        assert_eq!(state.num_qubits, 3);
344        assert_eq!(state.amplitudes.len(), 8); // 2^3
345    }
346
347    #[test]
348    fn test_sampling() {
349        let config = SimulationConfig::with_shots(100).with_seed(42);
350        let backend = QuantumSimulationBackend::with_config(config);
351
352        let state = backend.execute_state(2).expect("Execute failed");
353        let samples = backend.sample_state(&state, 100).expect("Sample failed");
354
355        assert_eq!(samples.len(), 100);
356        for sample in samples {
357            assert_eq!(sample.len(), 2);
358        }
359    }
360
361    #[test]
362    fn test_state_probabilities() {
363        let state = SimulatedState::new(2);
364        let probs = state.probabilities();
365
366        // Initial state |00⟩ should have probability 1 for |00⟩
367        assert!((probs[0] - 1.0).abs() < 1e-10);
368        assert!(probs[1..].iter().all(|&p| p.abs() < 1e-10));
369    }
370
371    #[test]
372    fn test_state_to_factor() {
373        let backend = QuantumSimulationBackend::new();
374        let state = backend.execute_state(2).expect("Execute failed");
375
376        let factor = backend
377            .state_to_factor(&state, &["x".to_string(), "y".to_string()])
378            .expect("Factor creation failed");
379
380        assert_eq!(factor.variables.len(), 2);
381    }
382}