[][src]Module tensorflow_proto::tensorflow::tpu

Modules

gradient_accumulation_status
hot_id_replication_configuration
learning_rate
online_yogi_parameters
optimization_parameters
state_variable_specification
tpu_embedding_configuration
tpu_embedding_output_layout

Structs

AdadeltaParameters

https://www.tensorflow.org/api_docs/python/tf/train/AdadeltaOptimizer https://github.com/tensorflow/tensorflow/blob/c19e29306ce1777456b2dbb3a14f511edf7883a8/tensorflow/core/kernels/training_ops.cc#L68

AdagradParameters

https://www.tensorflow.org/api_docs/python/tf/train/AdagradOptimizer https://github.com/tensorflow/tensorflow/blob/c19e29306ce1777456b2dbb3a14f511edf7883a8/tensorflow/core/kernels/training_ops.cc#L151

AdamParameters

The Adam optimizer does not implement hyper-parameter update; use the dynamic learning rate feature instead, setting the learning rate to: user learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t) Here, t is the current timestep.

BoundedAdagradParameters

Algorithm in http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.

CenteredRmsPropParameters

https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer https://github.com/tensorflow/tensorflow/blob/c19e29306ce1777456b2dbb3a14f511edf7883a8/tensorflow/core/kernels/training_ops.cc#L372

ClippingLimits
CompilationResultProto

Describes the result of a TPU compilation.

DynamicLearningRate

Dynamic learning rate specification in the TPUEmbeddingConfiguration. The actual learning rates are provided as a scalar input list to the SendTPUEmbeddingGradients Op indexed by their tag specified through the following proto.

FtrlParameters

https://www.tensorflow.org/api_docs/python/tf/train/FtrlOptimizer https://github.com/tensorflow/tensorflow/blob/c19e29306ce1777456b2dbb3a14f511edf7883a8/tensorflow/core/kernels/training_ops.cc#L192

GradientAccumulationStatus

Status of using gradient accumulation (doing two passes over the input gradients: one to accumulate them into a temporary array and another to apply them using the actual optimization algorithm). The extra message is to wrap the enum for scoping.

HotIdReplicationConfiguration

Configuration proto for hot ID optimization. This is an experimental feature that is currently disabled (by default).

LearningRate

Source of learning rate to use.

MdlAdagradLightParameters

Variant of algorithm in http://proceedings.mlr.press/v44/shamir15.pdf

MomentumParameters

https://www.tensorflow.org/api_docs/python/tf/train/MomentumOptimizer https://github.com/tensorflow/tensorflow/blob/c19e29306ce1777456b2dbb3a14f511edf7883a8/tensorflow/core/kernels/training_ops.cc#L271

OnlineYogiParameters

The online Yogi optimizer does not implement hyper-parameter update; use the dynamic learning rate feature instead, setting the learning rate to: user learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t) Here, t is the current timestep.

OptimizationParameters
PaddingMap

A mapping between the dynamic shape dimension of an input and the arg that represents the real shape.

ProximalAdagradParameters

https://www.tensorflow.org/api_docs/python/tf/train/ProximalAdagradOptimizer https://github.com/tensorflow/tensorflow/blob/c19e29306ce1777456b2dbb3a14f511edf7883a8/tensorflow/core/kernels/training_ops.cc#L164

RmsPropParameters

https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer https://github.com/tensorflow/tensorflow/blob/c19e29306ce1777456b2dbb3a14f511edf7883a8/tensorflow/core/kernels/training_ops.cc#L356

StateVariableSpecification

Specification of an optimization algorithm's state variables (both the main value vector and any extra accumulators, etc.). This proto is only used internally by the TPU software and is not exposed directly to the TF model.

StochasticGradientDescentParameters

https://www.tensorflow.org/api_docs/python/tf/train/GradientDescentOptimizer https://github.com/tensorflow/tensorflow/blob/c19e29306ce1777456b2dbb3a14f511edf7883a8/tensorflow/core/kernels/training_ops.cc#L423

TopologyProto

Describes the geometry of a TPU mesh.

TpuEmbeddingConfiguration
TpuEmbeddingOutputLayout