1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
use crate::tensor_impl::gen_tensor::GenTensor;
use crate::tensor_trait::index_slicing::IndexSlicing;
use crate::tensor::PaddingMode;
#[cfg(feature = "use-blas-lapack")]
use super::blas_api::BlasAPI;
#[cfg(feature = "use-blas-lapack")]
macro_rules! blas_conv {
($a:ty, $b: ident) => {
pub fn $b(
data: &GenTensor<$a>,
filter: &GenTensor<$a>,
stride: &[usize],
padding: &[usize],
dilation: &[usize],
padding_mode: PaddingMode
) -> GenTensor<$a> {
let self_dim = data.size();
let filter_dim = filter.size();
let out_channels = filter_dim[0];
let in_channels = filter_dim[1];
let sample_size = self_dim[0];
let mut padded_dim = Vec::new();
for i in 2..self_dim.len() {
padded_dim.push(self_dim[i] + padding[i-2]*2);
}
let mut start_point = Vec::new();
for i in 0..stride.len() {
let half = filter_dim[2+i]/2;
let dilated = half*dilation[i];
start_point.push(dilated);
}
let mut output_size = Vec::new();
for i in 0..stride.len() {
let output_dim = (padded_dim[i] - dilation[i]*(filter_dim[2+i]-1)-1)/stride[i] + 1;
output_size.push(output_dim);
}
let mut output_tensor_size = vec![sample_size, out_channels];
output_tensor_size.append(&mut output_size.clone());
let output_inner_size = output_size.iter().product::<usize>();
let conv_size = filter_dim.iter().product::<usize>()/out_channels;
let mut columned_data = Vec::<$a>::with_capacity(sample_size*output_inner_size*conv_size);
let mut left_upper = vec![0; stride.len()];
let mut current_data_elem = left_upper.to_vec();
let mut push_value: $a;
let mut in_margin: bool;
for i in 0..sample_size {
left_upper.iter_mut().map(|x| *x = 0).count();
for _k in 0..output_inner_size {
current_data_elem.clone_from_slice(&left_upper);
for in_channel_index in 0..in_channels {
for _inner_index in 0..conv_size/in_channels {
push_value = 0.;
in_margin = false;
for i in 0..current_data_elem.len() {
if current_data_elem[i] < padding[i]
|| current_data_elem[i] >= (padding[i] + self_dim[i+2]) {
match padding_mode {
PaddingMode::Zeros => {
push_value = 0.;
in_margin = true;
break;
},
_ => {unimplemented!();}
}
}
}
if ! in_margin {
let real_data_elem = current_data_elem.iter()
.zip(padding.iter())
.map(|(x, y)| x - y)
.collect::<Vec::<usize>>();
let mut real_data_elem2 = vec![i, in_channel_index];
real_data_elem2.append(&mut real_data_elem.clone());
push_value = data.get(&real_data_elem2);
}
columned_data.push(push_value);
let mut current_pos = current_data_elem.len()-1;
loop {
current_data_elem[current_pos] += dilation[current_pos];
if current_data_elem[current_pos] >= dilation[current_pos]*filter_dim[current_pos+2] + left_upper[current_pos] {
current_data_elem[current_pos] = left_upper[current_pos];
if current_pos > 0 {
current_pos -= 1;
} else {
break;
}
} else {
break;
}
};
}
};
let mut current_pos = left_upper.len()-1;
loop {
left_upper[current_pos] += stride[current_pos];
let mut compare_pos = padded_dim[current_pos] - start_point[current_pos]*2;
if filter_dim[current_pos+2] % 2 == 0 {
compare_pos += 1;
}
if left_upper[current_pos] >= compare_pos {
left_upper[current_pos] = 0;
if current_pos > 0 {
current_pos -= 1;
} else {
break;
}
} else {
break;
}
};
}
}
let mut columned_result = vec![0.; sample_size*out_channels*output_inner_size];
BlasAPI::<$a>::gemm(true, false, sample_size*output_inner_size, out_channels, conv_size,
1., &columned_data, conv_size,
filter.get_data(), conv_size,
1., &mut columned_result, sample_size*output_inner_size
);
let mut result_dim = output_tensor_size.to_vec();
result_dim.swap(0, 1);
let mut result = GenTensor::<$a>::new_move(columned_result.to_vec(),
result_dim);
let mut permute_dim: Vec<usize> = (0..output_tensor_size.len()).collect();
permute_dim[0] = 1;
permute_dim[1] = 0;
result = result.permute(&permute_dim);
result
}
}
}
#[cfg(feature = "use-blas-lapack")]
blas_conv!(f32, gemm_conv_f32);
#[cfg(feature = "use-blas-lapack")]
blas_conv!(f64, gemm_conv_f64);
#[cfg(test)]
mod tests {
use crate::tensor_impl::gen_tensor::GenTensor;
use super::*;
#[test]
#[cfg(feature = "use-blas-lapack")]
fn test_gemm_conv() {
{
let data = GenTensor::<f32>::arange(30).reshape(&vec![2, 3, 5]);
let filter = GenTensor::<f32>::arange(18).reshape(&vec![2, 3, 3]);
let stride = vec![1];
let padding = vec![0];
let dilation = vec![1];
let padding_mode = PaddingMode::Zeros;
let result = gemm_conv_f32(&data, &filter, &stride, &padding, &dilation, padding_mode);
println!("output size: {:?}", result.size());
println!("output size: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![312.0, 348.0, 384.0, 798.0, 915.0, 1032.0, 852.0, 888.0, 924.0, 2553.0, 2670.0, 2787.0], &vec![2, 2, 3]));
}
{
let mut raw_data = Vec::new();
for i in 0..75 {
raw_data.push(i as f32);
}
let data = GenTensor::<f32>::new_raw(&raw_data, &vec![1, 3, 5, 5]);
let mut raw_data = Vec::new();
for i in 0..54 {
raw_data.push(i as f32);
}
let filter = GenTensor::<f32>::new_raw(&raw_data, &vec![2, 3, 3, 3]);
let stride = vec![1, 1];
let padding = vec![0, 0];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let result = gemm_conv_f32(&data, &filter, &stride, &padding, &dilation, padding_mode);
println!("output size: {:?}", result.size());
println!("output size: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![15219.0, 15570.0, 15921.0, 16974.0, 17325.0, 17676.0, 18729.0, 19080.0, 19431.0, 37818.0, 38898.0, 39978.0, 43218.0, 44298.0, 45378.0, 48618.0, 49698.0, 50778.0], &vec![1, 2, 3, 3]));
}
{
let mut raw_data = Vec::new();
for i in 0..60 {
raw_data.push(i as f32);
}
let data = GenTensor::<f32>::new_raw(&raw_data, &vec![1, 3, 5, 4]);
let mut raw_data = Vec::new();
for i in 0..36 {
raw_data.push(i as f32);
}
let filter = GenTensor::<f32>::new_raw(&raw_data, &vec![2, 3, 3, 2]);
let stride = vec![1, 1];
let padding = vec![0, 0];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let result = gemm_conv_f32(&data, &filter, &stride, &padding, &dilation, padding_mode);
println!("output size: {:?}", result.size());
println!("output size: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![5289.0, 5442.0, 5595.0, 5901.0, 6054.0, 6207.0, 6513.0, 6666.0, 6819.0, 13227.0, 13704.0, 14181.0, 15135.0, 15612.0, 16089.0, 17043.0, 17520.0, 17997.0], &vec![1, 2, 3, 3]));
}
{
let data = GenTensor::<f32>::arange(375).reshape(&vec![1, 3, 5, 5, 5]);
let filter = GenTensor::<f32>::arange(162).reshape(&vec![2, 3, 3, 3, 3]);
let stride = vec![1, 1, 1];
let padding = vec![0, 0, 0];
let dilation = vec![1, 1, 1];
let padding_mode = PaddingMode::Zeros;
let result = gemm_conv_f32(&data, &filter, &stride, &padding, &dilation, padding_mode);
println!("output size: {:?}", result.size());
println!("output size: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![700704.0, 703944.0, 707184.0, 716904.0, 720144.0, 723384.0, 733104.0, 736344.0, 739584.0, 781704.0, 784944.0, 788184.0, 797904.0, 801144.0, 804384.0, 814104.0, 817344.0, 820584.0, 862704.0, 865944.0, 869184.0, 878904.0, 882144.0, 885384.0, 895104.0, 898344.0, 901584.0, 1724220.0, 1734021.0, 1743822.0, 1773225.0, 1783026.0, 1792827.0, 1822230.0, 1832031.0, 1841832.0, 1969245.0, 1979046.0, 1988847.0, 2018250.0, 2028051.0, 2037852.0, 2067255.0, 2077056.0, 2086857.0, 2214270.0, 2224071.0, 2233872.0, 2263275.0, 2273076.0, 2282877.0, 2312280.0, 2322081.0, 2331882.0], &vec![1, 2, 3, 3, 3]));
}
{
let data = GenTensor::<f32>::arange(16).reshape(&vec![1, 1, 4, 4]);
let filter = GenTensor::<f32>::arange(18).reshape(&vec![2, 1, 3, 3]);
let stride = vec![1, 1];
let padding = vec![1, 1];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let result = gemm_conv_f32(&data, &filter, &stride, &padding, &dilation, padding_mode);
println!("final output size: {:?}", result.size());
println!("final output: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![73.0, 121.0, 154.0, 103.0, 171.0, 258.0, 294.0, 186.0, 279.0, 402.0, 438.0, 270.0, 139.0, 187.0, 202.0, 113.0, 163.0, 283.0, 370.0, 265.0, 414.0, 663.0, 780.0, 537.0, 738.0, 1131.0, 1248.0, 837.0, 517.0, 781.0, 850.0, 563.0], &vec![1, 2, 4, 4]));
}
{
let data = GenTensor::<f32>::arange(49).reshape(&vec![1, 1, 7, 7]);
let filter = GenTensor::<f32>::arange(18).reshape(&vec![2, 1, 3, 3]);
let stride = vec![2, 2];
let padding = vec![0, 0];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let result = gemm_conv_f32(&data, &filter, &stride, &padding, &dilation, padding_mode);
println!("final output size: {:?}", result.size());
println!("final output: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![420.0, 492.0, 564.0, 924.0, 996.0, 1068.0, 1428.0, 1500.0, 1572.0, 1068.0, 1302.0, 1536.0, 2706.0, 2940.0, 3174.0, 4344.0, 4578.0, 4812.0], &vec![1, 2, 3, 3]));
}
{
let data = GenTensor::<f32>::arange(49).reshape(&vec![1, 1, 7, 7]);
let filter = GenTensor::<f32>::arange(18).reshape(&vec![2, 1, 3, 3]);
let stride = vec![2, 2];
let padding = vec![0, 0];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let result = gemm_conv_f32(&data, &filter, &stride, &padding, &dilation, padding_mode);
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![420.0, 492.0, 564.0, 924.0, 996.0, 1068.0, 1428.0, 1500.0, 1572.0, 1068.0, 1302.0, 1536.0, 2706.0, 2940.0, 3174.0, 4344.0, 4578.0, 4812.0], &vec![1, 2, 3, 3]));
}
{
let data = GenTensor::<f64>::arange(49).reshape(&vec![1, 1, 7, 7]);
let filter = GenTensor::<f64>::arange(18).reshape(&vec![2, 1, 3, 3]);
let stride = vec![2, 2];
let padding = vec![0, 0];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let result = gemm_conv_f64(&data, &filter, &stride, &padding, &dilation, padding_mode);
assert_eq!(result, GenTensor::<f64>::new_raw(&vec![420.0, 492.0, 564.0, 924.0, 996.0, 1068.0, 1428.0, 1500.0, 1572.0, 1068.0, 1302.0, 1536.0, 2706.0, 2940.0, 3174.0, 4344.0, 4578.0, 4812.0], &vec![1, 2, 3, 3]));
}
}
}