1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
use std::collections::BTreeMap;
use crate::tensor::PaddingMode;
use super::GenTensor;
use crate::tensor_trait::convolution::Convolution;
impl<T> Convolution for GenTensor<T> where T: num_traits::Float {
fn conv2d(&self, filter: &GenTensor<T>,
stride: (usize, usize),
padding: (usize, usize),
dilation: (usize, usize),
padding_mode: PaddingMode
) -> Self {
self.conv_gen(filter,
&[stride.0, stride.1],
&[padding.0, padding.1],
&[dilation.0, dilation.1],
padding_mode)
}
fn conv2d_grad(&self, filter: &GenTensor<T>,
stride: (usize, usize),
padding: (usize, usize),
dilation: (usize, usize),
padding_mode: PaddingMode,
output_grad: &GenTensor<T>
) -> (Self, Self){
self.conv_grad_gen(filter,
&[stride.0, stride.1],
&[padding.0, padding.1],
&[dilation.0, dilation.1],
padding_mode,
output_grad)
}
fn conv_gen(&self, filter: &GenTensor<T>,
stride: &[usize],
padding: &[usize],
dilation: &[usize],
padding_mode: PaddingMode
) -> GenTensor<T> {
let self_dim = self.size();
let filter_dim = filter.size();
if self_dim.len() != filter_dim.len() {
panic!("covn2d expects input and filter has the same dims, get {:?}, {:?}", self_dim, filter_dim);
}
if stride.len() != padding.len() || stride.len() != dilation.len() || stride.len() != (self_dim.len() - 2) {
panic!("stride, padding, stride should have the same # of dims, {:?}, {:?}, {:?}", stride, padding, dilation);
}
if stride.iter().any(|x| *x < 1) {
panic!("stride should be at least 1, get {:?}", stride);
}
if dilation.iter().any(|x| *x < 1) {
panic!("dilation should be at least 1, get {:?}", dilation);
}
let out_channels = filter_dim[0];
let in_channels = filter_dim[1];
let sample_size = self_dim[0];
let data_channels = self_dim[1];
if in_channels != data_channels {
panic!("covn2d expects input data channel size matches depth in filter {:?}, {:?}", self_dim, filter_dim);
}
let mut padded_dim = Vec::new();
for i in 2..self_dim.len() {
padded_dim.push(self_dim[i] + padding[i-2]*2);
}
let mut start_point = Vec::new();
for i in 0..stride.len() {
let half = filter_dim[2+i]/2;
let dilated = half*dilation[i];
start_point.push(dilated);
}
let mut output_size = Vec::new();
for i in 0..stride.len() {
let output_dim = (padded_dim[i] - dilation[i]*(filter_dim[2+i]-1)-1)/stride[i] + 1;
output_size.push(output_dim);
}
let mut output_tensor_size = vec![sample_size, out_channels];
output_tensor_size.append(&mut output_size.clone());
let output_inner_size = output_size.iter().product::<usize>();
let mut ret = GenTensor::<T>::zeros(&output_tensor_size);
let conv_size = filter_dim.iter().product::<usize>()/out_channels;
let mut data_block = vec![T::zero(); conv_size];
let mut filter_block = vec![T::zero(); conv_size];
let inner_steps = output_inner_size*out_channels;
let filter_step = conv_size;
for i in 0..sample_size {
for j in 0..out_channels {
filter_block.copy_from_slice(&filter.get_data()[(j)*filter_step..(j+1)*filter_step]);
let mut left_upper = vec![0; stride.len()];
for k in 0..output_inner_size {
let mut current_data_elem = left_upper.to_vec();
for in_channel_index in 0..in_channels {
for inner_index in 0..conv_size/in_channels {
let mut push_value = T::zero();
let mut in_margin = false;
for i in 0..current_data_elem.len() {
if current_data_elem[i] < padding[i] || current_data_elem[i] >= (padding[i] + self_dim[i+2]){
match padding_mode {
PaddingMode::Zeros => {
push_value = T::zero();
in_margin = true;
break;
},
_ => {unimplemented!();}
}
}
}
if ! in_margin {
let real_data_elem = current_data_elem.iter().zip(padding.iter()).map(|(x, y)| x - y).collect::<Vec::<usize>>();
let mut real_data_elem2 = vec![i, in_channel_index];
real_data_elem2.append(&mut real_data_elem.clone());
push_value = self.get(&real_data_elem2);
}
data_block[in_channel_index*(conv_size/in_channels) + inner_index] = push_value;
let mut current_pos = current_data_elem.len()-1;
loop {
current_data_elem[current_pos] += dilation[current_pos];
if current_data_elem[current_pos] >= dilation[current_pos]*filter_dim[current_pos+2] + left_upper[current_pos] {
current_data_elem[current_pos] = left_upper[current_pos];
if current_pos > 0 {
current_pos -= 1;
} else {
break;
}
} else {
break;
}
};
}
};
let mut value = T::zero();
for (x, y) in data_block.iter().zip(&filter_block) {
value = value + (*x)*(*y);
}
ret.set_1d(i*inner_steps + j*output_inner_size + k, value);
let mut current_pos = left_upper.len()-1;
loop {
left_upper[current_pos] += stride[current_pos];
let mut compare_pos = padded_dim[current_pos] - start_point[current_pos]*2;
if filter_dim[current_pos+2] % 2 == 0 {
compare_pos += 1;
}
if left_upper[current_pos] >= compare_pos {
left_upper[current_pos] = 0;
if current_pos > 0 {
current_pos -= 1;
} else {
break;
}
} else {
break;
}
};
}
}
}
ret
}
fn conv_grad_gen(&self, filter: &GenTensor<T>,
stride: &[usize],
padding: &[usize],
dilation: &[usize],
padding_mode: PaddingMode,
output_grad: &GenTensor<T>,
) -> (GenTensor<T>, GenTensor<T>) {
let self_dim = self.size();
let filter_dim = filter.size();
let output_grad_dim = output_grad.size();
if self_dim.len() <= 2 {
panic!("input data for conv has not enough dim {:?}.", self_dim);
}
if filter_dim.len() <= 2 {
panic!("filter for conv has not enough dim {:?}.", filter_dim);
}
if output_grad_dim.len() <= 2 {
panic!("output gradient for conv has not enough dim {:?}.", filter_dim);
}
if self_dim.len() != filter_dim.len() || self_dim.len() != output_grad_dim.len() {
panic!("covn2d expects input, output gradient and filter has the same dims, get {:?}, {:?}, {:?}", self_dim, filter_dim, output_grad_dim);
}
if filter_dim[1] != self_dim[1] {
panic!("covn2d expects input data channel size matches depth in filter {:?}, {:?}", self_dim, filter_dim);
}
if self_dim[0] != output_grad_dim[0] {
panic!("conv2d expects input and output has the same N: {:?}, {:?}", self_dim, output_grad_dim);
}
if filter_dim[0] != output_grad_dim[1] {
panic!("conv2d expects filter and output has the same Cout: {:?}, {:?}", filter_dim, output_grad_dim);
}
if stride.len() != padding.len() || stride.len() != dilation.len() {
panic!("stride, padding, stride should have the same # of dims, {:?}, {:?}, {:?}", stride, padding, dilation);
}
if stride.len()+2 != filter_dim.len() {
panic!("expect the same inner size, {:?}, {:?}", stride, filter_dim);
}
let filter_size = filter.size();
let n_c_out = filter_size[0];
let n_c_in = filter_size[1];
let n_n = self_dim[0];
let n_f_dd = filter_dim.iter().product::<usize>()/n_c_out/n_c_in;
let d_inner = self_dim.len() - 2;
let output_dd = output_grad_dim.iter().product::<usize>()/n_n/n_c_out;
let mut w_grad: BTreeMap<usize, Vec<T>> = BTreeMap::new();
let mut x_grad: BTreeMap<usize, Vec<T>> = BTreeMap::new();
for i in 0..n_n {
for j in 0..n_c_out {
let mut left_upper = vec![0; d_inner];
let mut output_index = 0;
loop {
let output_real_index = j*output_dd + i*n_c_out*output_dd + output_index;
let output_dimpos = output_grad.index2dimpos(output_real_index);
let output_gradient_value = output_grad.get(&output_dimpos);
for cin_index in 0..n_c_in {
for dd_index in 0..n_f_dd {
let mut filter_elem = Vec::new();
let mut reminder = dd_index;
for dim_pos in 0..d_inner {
let left_product = filter_size[dim_pos+3..filter_size.len()]
.iter()
.product::<usize>();
filter_elem.push(reminder / left_product);
reminder %= left_product;
}
let mut data_elem = left_upper.to_vec();
for dim_pos in 0..d_inner {
data_elem[dim_pos] += filter_elem[dim_pos]*dilation[dim_pos];
}
let mut full_filter_elem = vec![j, cin_index];
full_filter_elem.append(&mut filter_elem.clone());
let mut zero_padded_flag = false;
let mut unpadded_elem = data_elem.clone();
for dim_pos in 0..d_inner {
if data_elem[dim_pos] < padding[dim_pos] {
match padding_mode {
PaddingMode::Zeros => {
zero_padded_flag = true;
},
PaddingMode::Reflect => {
unpadded_elem[dim_pos] = padding[dim_pos] - data_elem[dim_pos] - 1;
},
PaddingMode::Replicate => {
unpadded_elem[dim_pos] = 0;
},
PaddingMode::Circular => {
unpadded_elem[dim_pos] = self_dim[dim_pos+2] - (padding[dim_pos] - data_elem[dim_pos]);
},
}
} else if data_elem[dim_pos] >= self_dim[dim_pos + 2] + padding[dim_pos] {
match padding_mode {
PaddingMode::Zeros => {
zero_padded_flag = true;
},
PaddingMode::Reflect => {
unpadded_elem[dim_pos] = self_dim[dim_pos+2] - (data_elem[dim_pos] - (self_dim[dim_pos + 2] + padding[dim_pos]) + 1);
},
PaddingMode::Replicate => {
unpadded_elem[dim_pos] = self_dim[dim_pos + 2]-1;
},
PaddingMode::Circular => {
unpadded_elem[dim_pos] = data_elem[dim_pos] - (self_dim[dim_pos + 2] + padding[dim_pos]);
},
}
} else {
unpadded_elem[dim_pos] -= padding[dim_pos];
}
}
if zero_padded_flag {
continue;
} else {
let mut full_data_elem = vec![i, cin_index];
full_data_elem.append(&mut unpadded_elem.clone());
let filter_value = filter.get(&full_filter_elem);
let data_value = self.get(&full_data_elem);
let w_grad_value = output_gradient_value*data_value;
let x_grad_value = output_gradient_value*filter_value;
let total_w_index = filter.dimpos2index(&full_filter_elem);
let total_x_index = self.dimpos2index(&full_data_elem);
if let std::collections::btree_map::Entry::Vacant(e) = w_grad.entry(total_w_index) {
e.insert(vec![w_grad_value]);
} else {
w_grad.get_mut(&total_w_index).expect("").push(w_grad_value);
}
if let std::collections::btree_map::Entry::Vacant(e) = x_grad.entry(total_x_index) {
e.insert(vec![x_grad_value]);
} else {
x_grad.get_mut(&total_x_index).expect("").push(x_grad_value);
}
}
}
}
for current_pos in 0..d_inner {
let real_pos = d_inner - current_pos - 1;
left_upper[real_pos] += stride[real_pos];
let compare_pos = self_dim[real_pos+2]
+ padding[real_pos]*2
- ((filter_dim[real_pos + 2]-1)*dilation[real_pos] + 1);
if left_upper[real_pos] > compare_pos {
left_upper[real_pos] = 0;
} else {
break;
}
}
if left_upper.iter().sum::<usize>() == 0 {
break;
}
output_index += 1;
};
}
}
let mut ret_w_grad = GenTensor::zeros(filter.size());
let mut ret_x_grad = GenTensor::zeros(self.size());
for i in w_grad.keys() {
let mut sum = T::zero();
for w_value in w_grad.get(i).expect("") {
sum = sum + *w_value;
}
ret_w_grad.set_1d(*i, sum);
}
for i in x_grad.keys() {
let mut sum = T::zero();
for x_value in x_grad.get(i).expect("") {
sum = sum + *x_value;
}
ret_x_grad.set_1d(*i, sum);
}
(ret_w_grad, ret_x_grad)
}
}
#[cfg(test)]
mod tests {
use crate::tensor_impl::gen_tensor::GenTensor;
use crate::tensor_trait::index_slicing::IndexSlicing;
use super::*;
#[test]
fn conv_gen() {
{
let data = GenTensor::<f32>::arange(30).reshape(&vec![2, 3, 5]);
let filter = GenTensor::<f32>::arange(18).reshape(&vec![2, 3, 3]);
let stride = vec![1];
let padding = vec![0];
let dilation = vec![1];
let padding_mode = PaddingMode::Zeros;
let result = data.conv_gen(&filter, &stride, &padding, &dilation, padding_mode);
println!("output size: {:?}", result.size());
println!("output size: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![312.0, 348.0, 384.0, 798.0, 915.0, 1032.0, 852.0, 888.0, 924.0, 2553.0, 2670.0, 2787.0], &vec![2, 2, 3]));
}
{
let mut raw_data = Vec::new();
for i in 0..75 {
raw_data.push(i as f32);
}
let data = GenTensor::<f32>::new_raw(&raw_data, &vec![1, 3, 5, 5]);
let mut raw_data = Vec::new();
for i in 0..54 {
raw_data.push(i as f32);
}
let filter = GenTensor::<f32>::new_raw(&raw_data, &vec![2, 3, 3, 3]);
let stride = vec![1, 1];
let padding = vec![0, 0];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let result = data.conv_gen(&filter, &stride, &padding, &dilation, padding_mode);
println!("output size: {:?}", result.size());
println!("output size: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![15219.0, 15570.0, 15921.0, 16974.0, 17325.0, 17676.0, 18729.0, 19080.0, 19431.0, 37818.0, 38898.0, 39978.0, 43218.0, 44298.0, 45378.0, 48618.0, 49698.0, 50778.0], &vec![1, 2, 3, 3]));
}
{
let mut raw_data = Vec::new();
for i in 0..60 {
raw_data.push(i as f32);
}
let data = GenTensor::<f32>::new_raw(&raw_data, &vec![1, 3, 5, 4]);
let mut raw_data = Vec::new();
for i in 0..36 {
raw_data.push(i as f32);
}
let filter = GenTensor::<f32>::new_raw(&raw_data, &vec![2, 3, 3, 2]);
let stride = vec![1, 1];
let padding = vec![0, 0];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let result = data.conv_gen(&filter, &stride, &padding, &dilation, padding_mode);
println!("output size: {:?}", result.size());
println!("output size: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![5289.0, 5442.0, 5595.0, 5901.0, 6054.0, 6207.0, 6513.0, 6666.0, 6819.0, 13227.0, 13704.0, 14181.0, 15135.0, 15612.0, 16089.0, 17043.0, 17520.0, 17997.0], &vec![1, 2, 3, 3]));
}
{
let data = GenTensor::<f32>::arange(375).reshape(&vec![1, 3, 5, 5, 5]);
let filter = GenTensor::<f32>::arange(162).reshape(&vec![2, 3, 3, 3, 3]);
let stride = vec![1, 1, 1];
let padding = vec![0, 0, 0];
let dilation = vec![1, 1, 1];
let padding_mode = PaddingMode::Zeros;
let result = data.conv_gen(&filter, &stride, &padding, &dilation, padding_mode);
println!("output size: {:?}", result.size());
println!("output size: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![700704.0, 703944.0, 707184.0, 716904.0, 720144.0, 723384.0, 733104.0, 736344.0, 739584.0, 781704.0, 784944.0, 788184.0, 797904.0, 801144.0, 804384.0, 814104.0, 817344.0, 820584.0, 862704.0, 865944.0, 869184.0, 878904.0, 882144.0, 885384.0, 895104.0, 898344.0, 901584.0, 1724220.0, 1734021.0, 1743822.0, 1773225.0, 1783026.0, 1792827.0, 1822230.0, 1832031.0, 1841832.0, 1969245.0, 1979046.0, 1988847.0, 2018250.0, 2028051.0, 2037852.0, 2067255.0, 2077056.0, 2086857.0, 2214270.0, 2224071.0, 2233872.0, 2263275.0, 2273076.0, 2282877.0, 2312280.0, 2322081.0, 2331882.0], &vec![1, 2, 3, 3, 3]));
}
{
let data = GenTensor::<f32>::arange(16).reshape(&vec![1, 1, 4, 4]);
let filter = GenTensor::<f32>::arange(18).reshape(&vec![2, 1, 3, 3]);
let stride = vec![1, 1];
let padding = vec![1, 1];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let result = data.conv_gen(&filter, &stride, &padding, &dilation, padding_mode);
println!("final output size: {:?}", result.size());
println!("final output: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![73.0, 121.0, 154.0, 103.0, 171.0, 258.0, 294.0, 186.0, 279.0, 402.0, 438.0, 270.0, 139.0, 187.0, 202.0, 113.0, 163.0, 283.0, 370.0, 265.0, 414.0, 663.0, 780.0, 537.0, 738.0, 1131.0, 1248.0, 837.0, 517.0, 781.0, 850.0, 563.0], &vec![1, 2, 4, 4]));
}
{
let data = GenTensor::<f32>::arange(49).reshape(&vec![1, 1, 7, 7]);
let filter = GenTensor::<f32>::arange(18).reshape(&vec![2, 1, 3, 3]);
let stride = vec![2, 2];
let padding = vec![0, 0];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let result = data.conv_gen(&filter, &stride, &padding, &dilation, padding_mode);
println!("final output size: {:?}", result.size());
println!("final output: {:?}", result.get_data());
assert_eq!(result, GenTensor::<f32>::new_raw(&vec![420.0, 492.0, 564.0, 924.0, 996.0, 1068.0, 1428.0, 1500.0, 1572.0, 1068.0, 1302.0, 1536.0, 2706.0, 2940.0, 3174.0, 4344.0, 4578.0, 4812.0], &vec![1, 2, 3, 3]));
}
}
#[test]
fn conv_grad_gen() {
{
let data = GenTensor::<f32>::arange(75).reshape(&vec![1, 3, 5, 5]);
let filter = GenTensor::<f32>::arange(54).reshape(&vec![2, 3, 3, 3]);
let output_grad = GenTensor::<f32>::arange(18).reshape(&vec![1, 2, 3, 3]);
let stride = vec![1, 1];
let padding = vec![0, 0];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let (w_grad, x_grad) = data.conv_grad_gen(&filter, &stride, &padding, &dilation, padding_mode, &output_grad);
println!("w_grad: {:?}", w_grad);
println!("x_grad: {:?}", x_grad);
assert_eq!(w_grad, GenTensor::new_raw(&vec![312.0, 348.0, 384.0, 492.0, 528.0, 564.0, 672.0, 708.0, 744.0, 1212.0, 1248.0, 1284.0, 1392.0, 1428.0, 1464.0, 1572.0, 1608.0, 1644.0, 2112.0, 2148.0, 2184.0, 2292.0, 2328.0, 2364.0, 2472.0, 2508.0, 2544.0, 798.0, 915.0, 1032.0, 1383.0, 1500.0, 1617.0, 1968.0, 2085.0, 2202.0, 3723.0, 3840.0, 3957.0, 4308.0, 4425.0, 4542.0, 4893.0, 5010.0, 5127.0, 6648.0, 6765.0, 6882.0, 7233.0, 7350.0, 7467.0, 7818.0, 7935.0, 8052.0], &vec![2, 3, 3, 3]));
}
{
let data = GenTensor::<f32>::arange(60).reshape(&vec![1, 3, 5, 4]);
let filter = GenTensor::<f32>::arange(36).reshape(&vec![2, 3, 3, 2]);
let output_grad = GenTensor::<f32>::arange(18).reshape(&vec![1, 2, 3, 3]);
let stride = vec![1, 1];
let padding = vec![0, 0];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let (w_grad, x_grad) = data.conv_grad_gen(&filter, &stride, &padding, &dilation, padding_mode, &output_grad);
println!("{:?}, {:?}, {:?}", w_grad, x_grad, output_grad);
assert_eq!(w_grad, GenTensor::new_raw(&vec![258.0, 294.0, 402.0, 438.0, 546.0, 582.0, 978.0, 1014.0, 1122.0, 1158.0, 1266.0, 1302.0, 1698.0, 1734.0, 1842.0, 1878.0, 1986.0, 2022.0, 663.0, 780.0, 1131.0, 1248.0, 1599.0, 1716.0, 3003.0, 3120.0, 3471.0, 3588.0, 3939.0, 4056.0, 5343.0, 5460.0, 5811.0, 5928.0, 6279.0, 6396.0], &vec![2, 3, 3, 2]));
}
{
let data = GenTensor::<f32>::arange(75).reshape(&vec![1, 3, 5, 5]);
let filter = GenTensor::<f32>::arange(54).reshape(&vec![2, 3, 3, 3]);
let output_grad = GenTensor::<f32>::arange(50).reshape(&vec![1, 2, 5, 5]);
let stride = vec![1, 1];
let padding = vec![1, 1];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let (w_grad, x_grad) = data.conv_grad_gen(&filter, &stride, &padding, &dilation, padding_mode, &output_grad);
println!("w_grad: {:?}", w_grad);
println!("x_grad: {:?}", x_grad);
assert_eq!(w_grad, GenTensor::new_raw(&vec![2680.0, 3420.0, 2760.0, 3900.0, 4900.0, 3900.0, 2760.0, 3420.0, 2680.0, 8680.0, 10670.0, 8360.0, 10150.0, 12400.0, 9650.0, 6760.0, 8170.0, 6280.0, 14680.0, 17920.0, 13960.0, 16400.0, 19900.0, 15400.0, 10760.0, 12920.0, 9880.0, 6280.0, 8170.0, 6760.0, 9650.0, 12400.0, 10150.0, 8360.0, 10670.0, 8680.0, 22280.0, 27920.0, 22360.0, 28400.0, 35525.0, 28400.0, 22360.0, 27920.0, 22280.0, 38280.0, 47670.0, 37960.0, 47150.0, 58650.0, 46650.0, 36360.0, 45170.0, 35880.0], &vec![2, 3, 3, 3]));
}
{
let data = GenTensor::<f32>::arange(75).reshape(&vec![1, 3, 5, 5]);
let filter = GenTensor::<f32>::arange(150).reshape(&vec![2, 3, 5, 5]);
let output_grad = GenTensor::<f32>::arange(50).reshape(&vec![1, 2, 5, 5]);
let stride = vec![1, 1];
let padding = vec![2, 2];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let (w_grad, x_grad) = data.conv_grad_gen(&filter, &stride, &padding, &dilation, padding_mode, &output_grad);
println!("w_grad: {:?}", w_grad);
println!("x_grad: {:?}", x_grad);
assert_eq!(w_grad, GenTensor::new_raw(&vec![1128.0, 1580.0, 2065.0, 1700.0, 1308.0, 1964.0, 2680.0, 3420.0, 2760.0, 2084.0, 2905.0, 3900.0, 4900.0, 3900.0, 2905.0, 2084.0, 2760.0, 3420.0, 2680.0, 1964.0, 1308.0, 1700.0, 2065.0, 1580.0, 1128.0, 5178.0, 6830.0, 8440.0, 6650.0, 4908.0, 6614.0, 8680.0, 10670.0, 8360.0, 6134.0, 7780.0, 10150.0, 12400.0, 9650.0, 7030.0, 5234.0, 6760.0, 8170.0, 6280.0, 4514.0, 3108.0, 3950.0, 4690.0, 3530.0, 2478.0, 9228.0, 12080.0, 14815.0, 11600.0, 8508.0, 11264.0, 14680.0, 17920.0, 13960.0, 10184.0, 12655.0, 16400.0, 19900.0, 15400.0, 11155.0, 8384.0, 10760.0, 12920.0, 9880.0, 7064.0, 4908.0, 6200.0, 7315.0, 5480.0, 3828.0, 2478.0, 3530.0, 4690.0, 3950.0, 3108.0, 4514.0, 6280.0, 8170.0, 6760.0, 5234.0, 7030.0, 9650.0, 12400.0, 10150.0, 7780.0, 6134.0, 8360.0, 10670.0, 8680.0, 6614.0, 4908.0, 6650.0, 8440.0, 6830.0, 5178.0, 12153.0, 16280.0, 20440.0, 16400.0, 12333.0, 16664.0, 22280.0, 27920.0, 22360.0, 16784.0, 21280.0, 28400.0, 35525.0, 28400.0, 21280.0, 16784.0, 22360.0, 27920.0, 22280.0, 16664.0, 12333.0, 16400.0, 20440.0, 16280.0, 12153.0, 21828.0, 29030.0, 36190.0, 28850.0, 21558.0, 28814.0, 38280.0, 47670.0, 37960.0, 28334.0, 35530.0, 47150.0, 58650.0, 46650.0, 34780.0, 27434.0, 36360.0, 45170.0, 35880.0, 26714.0, 19758.0, 26150.0, 32440.0, 25730.0, 19128.0], &vec![2, 3, 5, 5]));
}
{
let data = GenTensor::<f32>::arange(75).reshape(&vec![1, 3, 5, 5]);
let filter = GenTensor::<f32>::arange(150).reshape(&vec![2, 3, 5, 5]);
let output_grad = GenTensor::<f32>::arange(18).reshape(&vec![1, 2, 3, 3]);
let stride = vec![2, 2];
let padding = vec![2, 2];
let dilation = vec![1, 1];
let padding_mode = PaddingMode::Zeros;
let (w_grad, x_grad) = data.conv_grad_gen(&filter, &stride, &padding, &dilation, padding_mode, &output_grad);
println!("w_grad: {:?}", w_grad);
println!("x_grad: {:?}", x_grad);
assert_eq!(w_grad, GenTensor::new_raw(&vec![176.0, 200.0, 284.0, 172.0, 192.0, 296.0, 320.0, 449.0, 272.0, 292.0, 420.0, 447.0, 624.0, 375.0, 396.0, 164.0, 176.0, 233.0, 128.0, 136.0, 224.0, 236.0, 308.0, 168.0, 176.0, 776.0, 800.0, 1109.0, 672.0, 692.0, 896.0, 920.0, 1274.0, 772.0, 792.0, 1095.0, 1122.0, 1524.0, 900.0, 921.0, 464.0, 476.0, 608.0, 328.0, 336.0, 524.0, 536.0, 683.0, 368.0, 376.0, 1376.0, 1400.0, 1934.0, 1172.0, 1192.0, 1496.0, 1520.0, 2099.0, 1272.0, 1292.0, 1770.0, 1797.0, 2424.0, 1425.0, 1446.0, 764.0, 776.0, 983.0, 528.0, 536.0, 824.0, 836.0, 1058.0, 568.0, 576.0, 392.0, 452.0, 662.0, 424.0, 480.0, 692.0, 752.0, 1097.0, 704.0, 760.0, 1014.0, 1095.0, 1596.0, 1023.0, 1098.0, 560.0, 608.0, 881.0, 560.0, 604.0, 800.0, 848.0, 1226.0, 780.0, 824.0, 1892.0, 1952.0, 2837.0, 1824.0, 1880.0, 2192.0, 2252.0, 3272.0, 2104.0, 2160.0, 3039.0, 3120.0, 4521.0, 2898.0, 2973.0, 1760.0, 1808.0, 2606.0, 1660.0, 1704.0, 2000.0, 2048.0, 2951.0, 1880.0, 1924.0, 3392.0, 3452.0, 5012.0, 3224.0, 3280.0, 3692.0, 3752.0, 5447.0, 3504.0, 3560.0, 5064.0, 5145.0, 7446.0, 4773.0, 4848.0, 2960.0, 3008.0, 4331.0, 2760.0, 2804.0, 3200.0, 3248.0, 4676.0, 2980.0, 3024.0], &vec![2, 3, 5, 5]));
}
}
}