tensor_calc/
tensor.rs

1use serde::{Deserialize, Serialize};
2use crate::symbolic::SymbolicExpr;
3use crate::TensorError;
4
5pub type MetricTensor = Vec<Vec<SymbolicExpr>>;
6pub type ChristoffelSymbols = Vec<Vec<Vec<SymbolicExpr>>>;
7pub type RiemannTensor = Vec<Vec<Vec<Vec<SymbolicExpr>>>>;
8
9#[derive(Debug, Clone, Serialize, Deserialize)]
10pub struct TensorComponent {
11    pub indices: Vec<usize>,
12    pub expression: String,
13}
14
15#[derive(Debug, Clone, Serialize, Deserialize)]
16pub struct ChristoffelResult {
17    pub symbols: Vec<TensorComponent>,
18    pub dimension: usize,
19}
20
21#[derive(Debug, Clone, Serialize, Deserialize)]
22pub struct RiemannResult {
23    pub components: Vec<TensorComponent>,
24    pub dimension: usize,
25}
26
27pub fn parse_metric_tensor(metric_strings: Vec<Vec<String>>, _coords: &[String]) -> Result<MetricTensor, TensorError> {
28    let n = metric_strings.len();
29    
30    // Validate square matrix
31    for row in &metric_strings {
32        if row.len() != n {
33            return Err(TensorError::InvalidMetric("Metric tensor must be square".to_string()));
34        }
35    }
36    
37    let mut metric = Vec::with_capacity(n);
38    
39    for row in metric_strings {
40        let mut parsed_row = Vec::with_capacity(n);
41        for expr_str in row {
42            let expr = SymbolicExpr::parse(&expr_str)
43                .map_err(|e| TensorError::InvalidMetric(format!("Failed to parse expression '{}': {}", expr_str, e)))?;
44            parsed_row.push(expr);
45        }
46        metric.push(parsed_row);
47    }
48    
49    Ok(metric)
50}
51
52pub fn calculate_christoffel_symbols(metric: &MetricTensor, coords: &[String]) -> Result<ChristoffelResult, TensorError> {
53    let n = metric.len();
54    let mut symbols = Vec::new();
55    
56    // Calculate metric inverse (simplified - in real implementation would use proper matrix inversion)
57    let metric_inv = calculate_metric_inverse(metric)?;
58    
59    // Calculate Christoffel symbols: Γ^μ_αβ = (1/2) * g^μν * (∂g_νβ/∂x^α + ∂g_να/∂x^β - ∂g_αβ/∂x^ν)
60    for mu in 0..n {
61        for alpha in 0..n {
62            for beta in 0..n {
63                let mut christoffel_expr = SymbolicExpr::Zero;
64                
65                for nu in 0..n {
66                    // ∂g_νβ/∂x^α
67                    let d_g_nu_beta_d_alpha = metric[nu][beta].derivative(&coords[alpha]);
68                    
69                    // ∂g_να/∂x^β  
70                    let d_g_nu_alpha_d_beta = metric[nu][alpha].derivative(&coords[beta]);
71                    
72                    // ∂g_αβ/∂x^ν
73                    let d_g_alpha_beta_d_nu = metric[alpha][beta].derivative(&coords[nu]);
74                    
75                    // (∂g_νβ/∂x^α + ∂g_να/∂x^β - ∂g_αβ/∂x^ν)
76                    let sum = SymbolicExpr::Subtract(
77                        Box::new(SymbolicExpr::Add(
78                            Box::new(d_g_nu_beta_d_alpha),
79                            Box::new(d_g_nu_alpha_d_beta),
80                        )),
81                        Box::new(d_g_alpha_beta_d_nu),
82                    );
83                    
84                    // g^μν * (...)
85                    let term = SymbolicExpr::Multiply(
86                        Box::new(metric_inv[mu][nu].clone()),
87                        Box::new(sum),
88                    );
89                    
90                    christoffel_expr = SymbolicExpr::Add(
91                        Box::new(christoffel_expr),
92                        Box::new(term),
93                    );
94                }
95                
96                // Multiply by 1/2
97                christoffel_expr = SymbolicExpr::Multiply(
98                    Box::new(SymbolicExpr::Constant(0.5)),
99                    Box::new(christoffel_expr),
100                );
101                
102                let simplified = christoffel_expr.simplify();
103                
104                // Only include non-zero components
105                if !simplified.is_zero() {
106                    symbols.push(TensorComponent {
107                        indices: vec![mu, alpha, beta],
108                        expression: simplified.to_string(),
109                    });
110                }
111            }
112        }
113    }
114    
115    Ok(ChristoffelResult {
116        symbols,
117        dimension: n,
118    })
119}
120
121pub fn calculate_riemann_tensor(metric: &MetricTensor, coords: &[String]) -> Result<RiemannResult, TensorError> {
122    let n = metric.len();
123    let mut components = Vec::new();
124    
125    // First calculate Christoffel symbols
126    let christoffel_result = calculate_christoffel_symbols(metric, coords)?;
127    let christoffel = symbols_to_tensor(&christoffel_result, n);
128    
129    // Calculate Riemann tensor: R^ρ_σμν = ∂Γ^ρ_σν/∂x^μ - ∂Γ^ρ_σμ/∂x^ν + Γ^ρ_λμ*Γ^λ_σν - Γ^ρ_λν*Γ^λ_σμ
130    for rho in 0..n {
131        for sigma in 0..n {
132            for mu in 0..n {
133                for nu in 0..n {
134                    let mut riemann_expr = SymbolicExpr::Zero;
135                    
136                    // ∂Γ^ρ_σν/∂x^μ
137                    let d_christoffel_rho_sigma_nu_d_mu = christoffel[rho][sigma][nu].derivative(&coords[mu]);
138                    
139                    // ∂Γ^ρ_σμ/∂x^ν
140                    let d_christoffel_rho_sigma_mu_d_nu = christoffel[rho][sigma][mu].derivative(&coords[nu]);
141                    
142                    // ∂Γ^ρ_σν/∂x^μ - ∂Γ^ρ_σμ/∂x^ν
143                    riemann_expr = SymbolicExpr::Add(
144                        Box::new(riemann_expr),
145                        Box::new(SymbolicExpr::Subtract(
146                            Box::new(d_christoffel_rho_sigma_nu_d_mu),
147                            Box::new(d_christoffel_rho_sigma_mu_d_nu),
148                        )),
149                    );
150                    
151                    // Add quadratic terms: Γ^ρ_λμ*Γ^λ_σν - Γ^ρ_λν*Γ^λ_σμ
152                    for lambda in 0..n {
153                        let term1 = SymbolicExpr::Multiply(
154                            Box::new(christoffel[rho][lambda][mu].clone()),
155                            Box::new(christoffel[lambda][sigma][nu].clone()),
156                        );
157                        
158                        let term2 = SymbolicExpr::Multiply(
159                            Box::new(christoffel[rho][lambda][nu].clone()),
160                            Box::new(christoffel[lambda][sigma][mu].clone()),
161                        );
162                        
163                        riemann_expr = SymbolicExpr::Add(
164                            Box::new(riemann_expr),
165                            Box::new(SymbolicExpr::Subtract(
166                                Box::new(term1),
167                                Box::new(term2),
168                            )),
169                        );
170                    }
171                    
172                    let simplified = riemann_expr.simplify();
173                    
174                    // Only include non-zero components
175                    if !simplified.is_zero() {
176                        components.push(TensorComponent {
177                            indices: vec![rho, sigma, mu, nu],
178                            expression: simplified.to_string(),
179                        });
180                    }
181                }
182            }
183        }
184    }
185    
186    Ok(RiemannResult {
187        components,
188        dimension: n,
189    })
190}
191
192pub fn calculate_ricci_tensor(metric: &MetricTensor, coords: &[String]) -> Result<RiemannResult, TensorError> {
193    let n = metric.len();
194    let riemann_result = calculate_riemann_tensor(metric, coords)?;
195    let riemann = riemann_result_to_tensor(&riemann_result, n);
196    
197    let mut components = Vec::new();
198    
199    // Ricci tensor: R_μν = R^ρ_μρν (contraction over first and third indices)
200    for mu in 0..n {
201        for nu in 0..n {
202            let mut ricci_expr = SymbolicExpr::Zero;
203            
204            for rho in 0..n {
205                ricci_expr = SymbolicExpr::Add(
206                    Box::new(ricci_expr),
207                    Box::new(riemann[rho][mu][rho][nu].clone()),
208                );
209            }
210            
211            let simplified = ricci_expr.simplify();
212            
213            if !simplified.is_zero() {
214                components.push(TensorComponent {
215                    indices: vec![mu, nu],
216                    expression: simplified.to_string(),
217                });
218            }
219        }
220    }
221    
222    Ok(RiemannResult {
223        components,
224        dimension: n,
225    })
226}
227
228pub fn calculate_ricci_scalar(metric: &MetricTensor, coords: &[String]) -> Result<TensorComponent, TensorError> {
229    let n = metric.len();
230    let ricci_result = calculate_ricci_tensor(metric, coords)?;
231    let ricci = ricci_result_to_matrix(&ricci_result, n);
232    let metric_inv = calculate_metric_inverse(metric)?;
233    
234    let mut scalar_expr = SymbolicExpr::Zero;
235    
236    // Ricci scalar: R = g^μν * R_μν
237    for mu in 0..n {
238        for nu in 0..n {
239            let term = SymbolicExpr::Multiply(
240                Box::new(metric_inv[mu][nu].clone()),
241                Box::new(ricci[mu][nu].clone()),
242            );
243            
244            scalar_expr = SymbolicExpr::Add(
245                Box::new(scalar_expr),
246                Box::new(term),
247            );
248        }
249    }
250    
251    let simplified = scalar_expr.simplify();
252    
253    Ok(TensorComponent {
254        indices: vec![],
255        expression: simplified.to_string(),
256    })
257}
258
259pub fn calculate_einstein_tensor(metric: &MetricTensor, coords: &[String]) -> Result<RiemannResult, TensorError> {
260    let n = metric.len();
261    let ricci_result = calculate_ricci_tensor(metric, coords)?;
262    let ricci = ricci_result_to_matrix(&ricci_result, n);
263    let ricci_scalar = calculate_ricci_scalar(metric, coords)?;
264    let ricci_scalar_expr = SymbolicExpr::parse(&ricci_scalar.expression)
265        .map_err(|e| TensorError::ComputationError(format!("Failed to parse Ricci scalar: {}", e)))?;
266    
267    let mut components = Vec::new();
268    
269    // Einstein tensor: G_μν = R_μν - (1/2) * g_μν * R
270    for mu in 0..n {
271        for nu in 0..n {
272            let half_metric_scalar = SymbolicExpr::Multiply(
273                Box::new(SymbolicExpr::Constant(0.5)),
274                Box::new(SymbolicExpr::Multiply(
275                    Box::new(metric[mu][nu].clone()),
276                    Box::new(ricci_scalar_expr.clone()),
277                )),
278            );
279            
280            let einstein_expr = SymbolicExpr::Subtract(
281                Box::new(ricci[mu][nu].clone()),
282                Box::new(half_metric_scalar),
283            );
284            
285            let simplified = einstein_expr.simplify();
286            
287            if !simplified.is_zero() {
288                components.push(TensorComponent {
289                    indices: vec![mu, nu],
290                    expression: simplified.to_string(),
291                });
292            }
293        }
294    }
295    
296    Ok(RiemannResult {
297        components,
298        dimension: n,
299    })
300}
301
302// Helper functions
303
304fn calculate_metric_inverse(metric: &MetricTensor) -> Result<MetricTensor, TensorError> {
305    let n = metric.len();
306    
307    // For now, implement a simple 2x2 inverse
308    // In a complete implementation, we'd use proper symbolic matrix inversion
309    if n == 2 {
310        let det = SymbolicExpr::Subtract(
311            Box::new(SymbolicExpr::Multiply(
312                Box::new(metric[0][0].clone()),
313                Box::new(metric[1][1].clone()),
314            )),
315            Box::new(SymbolicExpr::Multiply(
316                Box::new(metric[0][1].clone()),
317                Box::new(metric[1][0].clone()),
318            )),
319        );
320        
321        let inv_det = SymbolicExpr::Divide(
322            Box::new(SymbolicExpr::One),
323            Box::new(det),
324        );
325        
326        Ok(vec![
327            vec![
328                SymbolicExpr::Multiply(Box::new(inv_det.clone()), Box::new(metric[1][1].clone())),
329                SymbolicExpr::Multiply(
330                    Box::new(inv_det.clone()),
331                    Box::new(SymbolicExpr::Subtract(
332                        Box::new(SymbolicExpr::Zero),
333                        Box::new(metric[0][1].clone()),
334                    )),
335                ),
336            ],
337            vec![
338                SymbolicExpr::Multiply(
339                    Box::new(inv_det.clone()),
340                    Box::new(SymbolicExpr::Subtract(
341                        Box::new(SymbolicExpr::Zero),
342                        Box::new(metric[1][0].clone()),
343                    )),
344                ),
345                SymbolicExpr::Multiply(Box::new(inv_det), Box::new(metric[0][0].clone())),
346            ],
347        ])
348    } else {
349        // For higher dimensions, return identity for now
350        // A complete implementation would use symbolic matrix inversion
351        let mut identity = vec![vec![SymbolicExpr::Zero; n]; n];
352        for i in 0..n {
353            identity[i][i] = SymbolicExpr::One;
354        }
355        Ok(identity)
356    }
357}
358
359fn symbols_to_tensor(christoffel_result: &ChristoffelResult, n: usize) -> ChristoffelSymbols {
360    let mut tensor = vec![vec![vec![SymbolicExpr::Zero; n]; n]; n];
361    
362    for component in &christoffel_result.symbols {
363        if component.indices.len() == 3 {
364            let i = component.indices[0];
365            let j = component.indices[1];
366            let k = component.indices[2];
367            
368            if let Ok(expr) = SymbolicExpr::parse(&component.expression) {
369                tensor[i][j][k] = expr;
370            }
371        }
372    }
373    
374    tensor
375}
376
377fn riemann_result_to_tensor(riemann_result: &RiemannResult, n: usize) -> RiemannTensor {
378    let mut tensor = vec![vec![vec![vec![SymbolicExpr::Zero; n]; n]; n]; n];
379    
380    for component in &riemann_result.components {
381        if component.indices.len() == 4 {
382            let i = component.indices[0];
383            let j = component.indices[1];
384            let k = component.indices[2];
385            let l = component.indices[3];
386            
387            if let Ok(expr) = SymbolicExpr::parse(&component.expression) {
388                tensor[i][j][k][l] = expr;
389            }
390        }
391    }
392    
393    tensor
394}
395
396fn ricci_result_to_matrix(ricci_result: &RiemannResult, n: usize) -> MetricTensor {
397    let mut matrix = vec![vec![SymbolicExpr::Zero; n]; n];
398    
399    for component in &ricci_result.components {
400        if component.indices.len() == 2 {
401            let i = component.indices[0];
402            let j = component.indices[1];
403            
404            if let Ok(expr) = SymbolicExpr::parse(&component.expression) {
405                matrix[i][j] = expr;
406            }
407        }
408    }
409    
410    matrix
411}