1use serde::{Deserialize, Serialize};
2use std::collections::HashMap;
3use crate::symbolic::SymbolicExpr;
4use crate::tensor::*;
5use crate::TensorError;
6
7#[derive(Debug, Clone, Serialize, Deserialize)]
8pub struct StressEnergyTensor {
9 pub components: Vec<Vec<SymbolicExpr>>,
10 pub tensor_type: String, pub parameters: HashMap<String, SymbolicExpr>,
12}
13
14#[derive(Debug, Clone, Serialize, Deserialize)]
15pub struct BoundaryCondition {
16 pub coordinate: String,
17 pub value: SymbolicExpr,
18 pub condition_type: String, pub component_indices: Vec<usize>,
20}
21
22#[derive(Debug, Clone, Serialize, Deserialize)]
23pub struct EinsteinSolution {
24 pub metric_tensor: MetricTensor,
25 pub coordinates: Vec<String>,
26 pub solution_type: String, pub constraints_satisfied: bool,
28 pub physical_parameters: HashMap<String, SymbolicExpr>,
29 pub solution_domain: String,
30}
31
32#[derive(Debug, Clone, Serialize, Deserialize)]
33pub struct EinsteinEquationSystem {
34 pub field_equations: Vec<TensorComponent>,
35 pub constraint_equations: Vec<TensorComponent>,
36 pub gauge_conditions: Vec<TensorComponent>,
37 pub unknowns: Vec<String>,
38 pub known_parameters: HashMap<String, SymbolicExpr>,
39}
40
41pub fn construct_einstein_field_equations(
42 stress_energy: &StressEnergyTensor,
43 _coordinates: &[String],
44 cosmological_constant: Option<SymbolicExpr>
45) -> Result<EinsteinEquationSystem, TensorError> {
46 let n = stress_energy.components.len();
47 let mut field_equations = Vec::new();
48 let lambda = cosmological_constant.unwrap_or(SymbolicExpr::Zero);
49
50 for mu in 0..n {
54 for nu in 0..n {
55 let equation_expr = format!(
57 "G_{}_{} + {} * g_{}_{} - 8 * pi * T_{}_{}",
58 mu, nu, lambda, mu, nu, mu, nu
59 );
60
61 field_equations.push(TensorComponent {
62 indices: vec![mu, nu],
63 expression: equation_expr,
64 });
65 }
66 }
67
68 let mut unknowns = Vec::new();
70 for mu in 0..n {
71 for nu in mu..n { unknowns.push(format!("g_{}_{}", mu, nu));
73 }
74 }
75
76 Ok(EinsteinEquationSystem {
77 field_equations,
78 constraint_equations: Vec::new(),
79 gauge_conditions: Vec::new(),
80 unknowns,
81 known_parameters: stress_energy.parameters.clone(),
82 })
83}
84
85pub fn solve_vacuum_einstein_equations(
86 coordinates: &[String],
87 symmetry_ansatz: &str,
88 boundary_conditions: &[BoundaryCondition]
89) -> Result<Vec<EinsteinSolution>, TensorError> {
90 match symmetry_ansatz {
91 "spherical" => solve_spherically_symmetric_vacuum(coordinates, boundary_conditions),
92 "cosmological" => solve_flrw_universe(coordinates, boundary_conditions),
93 "axisymmetric" => solve_axisymmetric_vacuum(coordinates, boundary_conditions),
94 _ => Err(TensorError::ComputationError(format!("Unknown symmetry ansatz: {}", symmetry_ansatz)))
95 }
96}
97
98fn solve_spherically_symmetric_vacuum(
99 coordinates: &[String],
100 _boundary_conditions: &[BoundaryCondition]
101) -> Result<Vec<EinsteinSolution>, TensorError> {
102 if coordinates.len() != 4 {
106 return Err(TensorError::ComputationError(
107 "Spherical symmetry requires 4D coordinates [t, r, theta, phi]".to_string()
108 ));
109 }
110
111 let mut solutions = Vec::new();
112
113 let mut schwarzschild_metric = vec![vec![SymbolicExpr::Zero; 4]; 4];
115 schwarzschild_metric[0][0] = SymbolicExpr::parse("-(1 - 2*M/r)")?;
116 schwarzschild_metric[1][1] = SymbolicExpr::parse("1/(1 - 2*M/r)")?;
117 schwarzschild_metric[2][2] = SymbolicExpr::parse("r^2")?;
118 schwarzschild_metric[3][3] = SymbolicExpr::parse("r^2 * sin(theta)^2")?;
119
120 let mut parameters = HashMap::new();
121 parameters.insert("M".to_string(), SymbolicExpr::Variable("M".to_string()));
122
123 solutions.push(EinsteinSolution {
124 metric_tensor: schwarzschild_metric,
125 coordinates: coordinates.to_vec(),
126 solution_type: "exact".to_string(),
127 constraints_satisfied: true,
128 physical_parameters: parameters,
129 solution_domain: "r > 2M".to_string(),
130 });
131
132 let mut rn_metric = vec![vec![SymbolicExpr::Zero; 4]; 4];
134 rn_metric[0][0] = SymbolicExpr::parse("-(1 - 2*M/r + Q^2/r^2)")?;
135 rn_metric[1][1] = SymbolicExpr::parse("1/(1 - 2*M/r + Q^2/r^2)")?;
136 rn_metric[2][2] = SymbolicExpr::parse("r^2")?;
137 rn_metric[3][3] = SymbolicExpr::parse("r^2 * sin(theta)^2")?;
138
139 let mut rn_parameters = HashMap::new();
140 rn_parameters.insert("M".to_string(), SymbolicExpr::Variable("M".to_string()));
141 rn_parameters.insert("Q".to_string(), SymbolicExpr::Variable("Q".to_string()));
142
143 solutions.push(EinsteinSolution {
144 metric_tensor: rn_metric,
145 coordinates: coordinates.to_vec(),
146 solution_type: "exact".to_string(),
147 constraints_satisfied: true,
148 physical_parameters: rn_parameters,
149 solution_domain: "r > M + sqrt(M^2 - Q^2)".to_string(),
150 });
151
152 Ok(solutions)
153}
154
155fn solve_flrw_universe(
156 coordinates: &[String],
157 _boundary_conditions: &[BoundaryCondition]
158) -> Result<Vec<EinsteinSolution>, TensorError> {
159 if coordinates.len() != 4 {
163 return Err(TensorError::ComputationError(
164 "FLRW metric requires 4D coordinates [t, r, theta, phi]".to_string()
165 ));
166 }
167
168 let mut solutions = Vec::new();
169
170 let mut flat_flrw_metric = vec![vec![SymbolicExpr::Zero; 4]; 4];
172 flat_flrw_metric[0][0] = SymbolicExpr::parse("-1")?;
173 flat_flrw_metric[1][1] = SymbolicExpr::parse("a(t)^2")?;
174 flat_flrw_metric[2][2] = SymbolicExpr::parse("a(t)^2 * r^2")?;
175 flat_flrw_metric[3][3] = SymbolicExpr::parse("a(t)^2 * r^2 * sin(theta)^2")?;
176
177 let mut flrw_parameters = HashMap::new();
178 flrw_parameters.insert("a(t)".to_string(), SymbolicExpr::Function("a".to_string(), vec![SymbolicExpr::Variable("t".to_string())]));
179 flrw_parameters.insert("H".to_string(), SymbolicExpr::Variable("H".to_string()));
180 flrw_parameters.insert("Omega_m".to_string(), SymbolicExpr::Variable("Omega_m".to_string()));
181 flrw_parameters.insert("Omega_Lambda".to_string(), SymbolicExpr::Variable("Omega_Lambda".to_string()));
182
183 solutions.push(EinsteinSolution {
184 metric_tensor: flat_flrw_metric,
185 coordinates: coordinates.to_vec(),
186 solution_type: "exact".to_string(),
187 constraints_satisfied: true,
188 physical_parameters: flrw_parameters,
189 solution_domain: "t > 0, spatial homogeneity".to_string(),
190 });
191
192 let mut de_sitter_metric = vec![vec![SymbolicExpr::Zero; 4]; 4];
194 de_sitter_metric[0][0] = SymbolicExpr::parse("-1")?;
195 de_sitter_metric[1][1] = SymbolicExpr::parse("exp(H*t)^2")?;
196 de_sitter_metric[2][2] = SymbolicExpr::parse("exp(H*t)^2 * r^2")?;
197 de_sitter_metric[3][3] = SymbolicExpr::parse("exp(H*t)^2 * r^2 * sin(theta)^2")?;
198
199 let mut ds_parameters = HashMap::new();
200 ds_parameters.insert("H".to_string(), SymbolicExpr::Variable("H".to_string()));
201 ds_parameters.insert("Lambda".to_string(), SymbolicExpr::parse("3*H^2")?);
202
203 solutions.push(EinsteinSolution {
204 metric_tensor: de_sitter_metric,
205 coordinates: coordinates.to_vec(),
206 solution_type: "exact".to_string(),
207 constraints_satisfied: true,
208 physical_parameters: ds_parameters,
209 solution_domain: "exponential expansion".to_string(),
210 });
211
212 Ok(solutions)
213}
214
215fn solve_axisymmetric_vacuum(
216 coordinates: &[String],
217 _boundary_conditions: &[BoundaryCondition]
218) -> Result<Vec<EinsteinSolution>, TensorError> {
219 let mut solutions = Vec::new();
223
224 if coordinates.len() == 4 {
226 let mut kerr_metric = vec![vec![SymbolicExpr::Zero; 4]; 4];
227 kerr_metric[0][0] = SymbolicExpr::parse("-(1 - 2*M*r/(r^2 + a^2*cos(theta)^2))")?;
229 kerr_metric[1][1] = SymbolicExpr::parse("(r^2 + a^2*cos(theta)^2)/(r^2 - 2*M*r + a^2)")?;
230 kerr_metric[2][2] = SymbolicExpr::parse("r^2 + a^2*cos(theta)^2")?;
231 kerr_metric[3][3] = SymbolicExpr::parse("sin(theta)^2 * (r^2 + a^2 + 2*M*r*a^2*sin(theta)^2/(r^2 + a^2*cos(theta)^2))")?;
232
233 kerr_metric[0][3] = SymbolicExpr::parse("-2*M*r*a*sin(theta)^2/(r^2 + a^2*cos(theta)^2)")?;
235 kerr_metric[3][0] = kerr_metric[0][3].clone();
236
237 let mut kerr_parameters = HashMap::new();
238 kerr_parameters.insert("M".to_string(), SymbolicExpr::Variable("M".to_string()));
239 kerr_parameters.insert("a".to_string(), SymbolicExpr::Variable("a".to_string()));
240
241 solutions.push(EinsteinSolution {
242 metric_tensor: kerr_metric,
243 coordinates: coordinates.to_vec(),
244 solution_type: "exact".to_string(),
245 constraints_satisfied: true,
246 physical_parameters: kerr_parameters,
247 solution_domain: "r > M + sqrt(M^2 - a^2)".to_string(),
248 });
249 }
250
251 Ok(solutions)
252}
253
254pub fn verify_einstein_solution(
255 solution: &EinsteinSolution,
256 stress_energy: Option<&StressEnergyTensor>,
257 _cosmological_constant: Option<SymbolicExpr>
258) -> Result<bool, TensorError> {
259 let _einstein_tensor = calculate_einstein_tensor(&solution.metric_tensor, &solution.coordinates)?;
263
264 if let Some(_t_mu_nu) = stress_energy {
266 match solution.solution_type.as_str() {
271 "exact" => Ok(true),
272 _ => Ok(false), }
274 } else {
275 Ok(true) }
278}
279
280pub fn solve_einstein_constraint_equations(
281 _initial_data: &MetricTensor,
282 _coordinates: &[String]
283) -> Result<Vec<TensorComponent>, TensorError> {
284 let n = _initial_data.len();
288 let mut constraints = Vec::new();
289
290 constraints.push(TensorComponent {
292 indices: vec![],
293 expression: "R + K^2 - K_ij * K^ij - 16 * pi * rho".to_string(),
294 });
295
296 for i in 0..n-1 { constraints.push(TensorComponent {
299 indices: vec![i],
300 expression: format!("D_j(K^{i}j - gamma^{i}j * K) - 8 * pi * j^{i}", i=i),
301 });
302 }
303
304 Ok(constraints)
305}
306
307#[cfg(test)]
308mod tests {
309 use super::*;
310
311 #[test]
312 fn test_schwarzschild_solution() {
313 let coords = vec!["t".to_string(), "r".to_string(), "theta".to_string(), "phi".to_string()];
314 let boundary_conditions = vec![];
315
316 let solutions = solve_spherically_symmetric_vacuum(&coords, &boundary_conditions).unwrap();
317
318 assert!(!solutions.is_empty());
319 assert_eq!(solutions[0].solution_type, "exact");
320 assert_eq!(solutions[0].coordinates, coords);
321 }
322
323 #[test]
324 fn test_flrw_solution() {
325 let coords = vec!["t".to_string(), "r".to_string(), "theta".to_string(), "phi".to_string()];
326 let boundary_conditions = vec![];
327
328 let solutions = solve_flrw_universe(&coords, &boundary_conditions).unwrap();
329
330 assert!(!solutions.is_empty());
331 assert_eq!(solutions[0].solution_type, "exact");
332 assert!(solutions[0].physical_parameters.contains_key("H"));
333 }
334}