tensor_calc/
einstein.rs

1use serde::{Deserialize, Serialize};
2use std::collections::HashMap;
3use crate::symbolic::SymbolicExpr;
4use crate::tensor::*;
5use crate::TensorError;
6
7#[derive(Debug, Clone, Serialize, Deserialize)]
8pub struct StressEnergyTensor {
9    pub components: Vec<Vec<SymbolicExpr>>,
10    pub tensor_type: String, // "perfect_fluid", "electromagnetic", "vacuum", etc.
11    pub parameters: HashMap<String, SymbolicExpr>,
12}
13
14#[derive(Debug, Clone, Serialize, Deserialize)]
15pub struct BoundaryCondition {
16    pub coordinate: String,
17    pub value: SymbolicExpr,
18    pub condition_type: String, // "dirichlet", "neumann", "asymptotic"
19    pub component_indices: Vec<usize>,
20}
21
22#[derive(Debug, Clone, Serialize, Deserialize)]
23pub struct EinsteinSolution {
24    pub metric_tensor: MetricTensor,
25    pub coordinates: Vec<String>,
26    pub solution_type: String, // "exact", "perturbative", "numerical"
27    pub constraints_satisfied: bool,
28    pub physical_parameters: HashMap<String, SymbolicExpr>,
29    pub solution_domain: String,
30}
31
32#[derive(Debug, Clone, Serialize, Deserialize)]
33pub struct EinsteinEquationSystem {
34    pub field_equations: Vec<TensorComponent>,
35    pub constraint_equations: Vec<TensorComponent>, 
36    pub gauge_conditions: Vec<TensorComponent>,
37    pub unknowns: Vec<String>,
38    pub known_parameters: HashMap<String, SymbolicExpr>,
39}
40
41pub fn construct_einstein_field_equations(
42    stress_energy: &StressEnergyTensor,
43    _coordinates: &[String],
44    cosmological_constant: Option<SymbolicExpr>
45) -> Result<EinsteinEquationSystem, TensorError> {
46    let n = stress_energy.components.len();
47    let mut field_equations = Vec::new();
48    let lambda = cosmological_constant.unwrap_or(SymbolicExpr::Zero);
49    
50    // Einstein field equations: G_μν + Λg_μν = 8πT_μν
51    // We'll treat this as G_μν + Λg_μν - 8πT_μν = 0
52    
53    for mu in 0..n {
54        for nu in 0..n {
55            // Create equation: G_μν + Λg_μν - 8πT_μν = 0
56            let equation_expr = format!(
57                "G_{}_{} + {} * g_{}_{} - 8 * pi * T_{}_{}",
58                mu, nu, lambda, mu, nu, mu, nu
59            );
60            
61            field_equations.push(TensorComponent {
62                indices: vec![mu, nu],
63                expression: equation_expr,
64            });
65        }
66    }
67    
68    // Generate unknown metric components 
69    let mut unknowns = Vec::new();
70    for mu in 0..n {
71        for nu in mu..n { // Symmetric tensor, only upper triangle
72            unknowns.push(format!("g_{}_{}", mu, nu));
73        }
74    }
75    
76    Ok(EinsteinEquationSystem {
77        field_equations,
78        constraint_equations: Vec::new(),
79        gauge_conditions: Vec::new(), 
80        unknowns,
81        known_parameters: stress_energy.parameters.clone(),
82    })
83}
84
85pub fn solve_vacuum_einstein_equations(
86    coordinates: &[String],
87    symmetry_ansatz: &str,
88    boundary_conditions: &[BoundaryCondition]
89) -> Result<Vec<EinsteinSolution>, TensorError> {
90    match symmetry_ansatz {
91        "spherical" => solve_spherically_symmetric_vacuum(coordinates, boundary_conditions),
92        "cosmological" => solve_flrw_universe(coordinates, boundary_conditions),
93        "axisymmetric" => solve_axisymmetric_vacuum(coordinates, boundary_conditions),
94        _ => Err(TensorError::ComputationError(format!("Unknown symmetry ansatz: {}", symmetry_ansatz)))
95    }
96}
97
98fn solve_spherically_symmetric_vacuum(
99    coordinates: &[String],
100    _boundary_conditions: &[BoundaryCondition]
101) -> Result<Vec<EinsteinSolution>, TensorError> {
102    // Schwarzschild ansatz: ds² = -f(r)dt² + h(r)dr² + r²(dθ² + sin²θ dφ²)
103    // For 4D coordinates [t, r, theta, phi]
104    
105    if coordinates.len() != 4 {
106        return Err(TensorError::ComputationError(
107            "Spherical symmetry requires 4D coordinates [t, r, theta, phi]".to_string()
108        ));
109    }
110    
111    let mut solutions = Vec::new();
112    
113    // Schwarzschild solution
114    let mut schwarzschild_metric = vec![vec![SymbolicExpr::Zero; 4]; 4];
115    schwarzschild_metric[0][0] = SymbolicExpr::parse("-(1 - 2*M/r)")?;
116    schwarzschild_metric[1][1] = SymbolicExpr::parse("1/(1 - 2*M/r)")?;
117    schwarzschild_metric[2][2] = SymbolicExpr::parse("r^2")?;
118    schwarzschild_metric[3][3] = SymbolicExpr::parse("r^2 * sin(theta)^2")?;
119    
120    let mut parameters = HashMap::new();
121    parameters.insert("M".to_string(), SymbolicExpr::Variable("M".to_string()));
122    
123    solutions.push(EinsteinSolution {
124        metric_tensor: schwarzschild_metric,
125        coordinates: coordinates.to_vec(),
126        solution_type: "exact".to_string(),
127        constraints_satisfied: true,
128        physical_parameters: parameters,
129        solution_domain: "r > 2M".to_string(),
130    });
131    
132    // Reissner-Nordström solution (charged black hole)
133    let mut rn_metric = vec![vec![SymbolicExpr::Zero; 4]; 4];
134    rn_metric[0][0] = SymbolicExpr::parse("-(1 - 2*M/r + Q^2/r^2)")?;
135    rn_metric[1][1] = SymbolicExpr::parse("1/(1 - 2*M/r + Q^2/r^2)")?;
136    rn_metric[2][2] = SymbolicExpr::parse("r^2")?;
137    rn_metric[3][3] = SymbolicExpr::parse("r^2 * sin(theta)^2")?;
138    
139    let mut rn_parameters = HashMap::new();
140    rn_parameters.insert("M".to_string(), SymbolicExpr::Variable("M".to_string()));
141    rn_parameters.insert("Q".to_string(), SymbolicExpr::Variable("Q".to_string()));
142    
143    solutions.push(EinsteinSolution {
144        metric_tensor: rn_metric,
145        coordinates: coordinates.to_vec(),
146        solution_type: "exact".to_string(),
147        constraints_satisfied: true,
148        physical_parameters: rn_parameters,
149        solution_domain: "r > M + sqrt(M^2 - Q^2)".to_string(),
150    });
151    
152    Ok(solutions)
153}
154
155fn solve_flrw_universe(
156    coordinates: &[String],
157    _boundary_conditions: &[BoundaryCondition]
158) -> Result<Vec<EinsteinSolution>, TensorError> {
159    // FLRW metric: ds² = -dt² + a(t)²[dr²/(1-kr²) + r²(dθ² + sin²θ dφ²)]
160    // For 4D coordinates [t, r, theta, phi]
161    
162    if coordinates.len() != 4 {
163        return Err(TensorError::ComputationError(
164            "FLRW metric requires 4D coordinates [t, r, theta, phi]".to_string()
165        ));
166    }
167    
168    let mut solutions = Vec::new();
169    
170    // Flat FLRW (k = 0)
171    let mut flat_flrw_metric = vec![vec![SymbolicExpr::Zero; 4]; 4];
172    flat_flrw_metric[0][0] = SymbolicExpr::parse("-1")?;
173    flat_flrw_metric[1][1] = SymbolicExpr::parse("a(t)^2")?;
174    flat_flrw_metric[2][2] = SymbolicExpr::parse("a(t)^2 * r^2")?;
175    flat_flrw_metric[3][3] = SymbolicExpr::parse("a(t)^2 * r^2 * sin(theta)^2")?;
176    
177    let mut flrw_parameters = HashMap::new();
178    flrw_parameters.insert("a(t)".to_string(), SymbolicExpr::Function("a".to_string(), vec![SymbolicExpr::Variable("t".to_string())]));
179    flrw_parameters.insert("H".to_string(), SymbolicExpr::Variable("H".to_string()));
180    flrw_parameters.insert("Omega_m".to_string(), SymbolicExpr::Variable("Omega_m".to_string()));
181    flrw_parameters.insert("Omega_Lambda".to_string(), SymbolicExpr::Variable("Omega_Lambda".to_string()));
182    
183    solutions.push(EinsteinSolution {
184        metric_tensor: flat_flrw_metric,
185        coordinates: coordinates.to_vec(),
186        solution_type: "exact".to_string(),
187        constraints_satisfied: true,
188        physical_parameters: flrw_parameters,
189        solution_domain: "t > 0, spatial homogeneity".to_string(),
190    });
191    
192    // de Sitter space (cosmological constant dominated)
193    let mut de_sitter_metric = vec![vec![SymbolicExpr::Zero; 4]; 4];
194    de_sitter_metric[0][0] = SymbolicExpr::parse("-1")?;
195    de_sitter_metric[1][1] = SymbolicExpr::parse("exp(H*t)^2")?;
196    de_sitter_metric[2][2] = SymbolicExpr::parse("exp(H*t)^2 * r^2")?;
197    de_sitter_metric[3][3] = SymbolicExpr::parse("exp(H*t)^2 * r^2 * sin(theta)^2")?;
198    
199    let mut ds_parameters = HashMap::new();
200    ds_parameters.insert("H".to_string(), SymbolicExpr::Variable("H".to_string()));
201    ds_parameters.insert("Lambda".to_string(), SymbolicExpr::parse("3*H^2")?);
202    
203    solutions.push(EinsteinSolution {
204        metric_tensor: de_sitter_metric,
205        coordinates: coordinates.to_vec(),
206        solution_type: "exact".to_string(),
207        constraints_satisfied: true,
208        physical_parameters: ds_parameters,
209        solution_domain: "exponential expansion".to_string(),
210    });
211    
212    Ok(solutions)
213}
214
215fn solve_axisymmetric_vacuum(
216    coordinates: &[String],
217    _boundary_conditions: &[BoundaryCondition]
218) -> Result<Vec<EinsteinSolution>, TensorError> {
219    // Placeholder for axisymmetric solutions (Kerr, etc.)
220    // This would require more sophisticated solving techniques
221    
222    let mut solutions = Vec::new();
223    
224    // Kerr solution (rotating black hole) - simplified
225    if coordinates.len() == 4 {
226        let mut kerr_metric = vec![vec![SymbolicExpr::Zero; 4]; 4];
227        // This is a simplified representation - full Kerr metric is much more complex
228        kerr_metric[0][0] = SymbolicExpr::parse("-(1 - 2*M*r/(r^2 + a^2*cos(theta)^2))")?;
229        kerr_metric[1][1] = SymbolicExpr::parse("(r^2 + a^2*cos(theta)^2)/(r^2 - 2*M*r + a^2)")?;
230        kerr_metric[2][2] = SymbolicExpr::parse("r^2 + a^2*cos(theta)^2")?;
231        kerr_metric[3][3] = SymbolicExpr::parse("sin(theta)^2 * (r^2 + a^2 + 2*M*r*a^2*sin(theta)^2/(r^2 + a^2*cos(theta)^2))")?;
232        
233        // Off-diagonal term
234        kerr_metric[0][3] = SymbolicExpr::parse("-2*M*r*a*sin(theta)^2/(r^2 + a^2*cos(theta)^2)")?;
235        kerr_metric[3][0] = kerr_metric[0][3].clone();
236        
237        let mut kerr_parameters = HashMap::new();
238        kerr_parameters.insert("M".to_string(), SymbolicExpr::Variable("M".to_string()));
239        kerr_parameters.insert("a".to_string(), SymbolicExpr::Variable("a".to_string()));
240        
241        solutions.push(EinsteinSolution {
242            metric_tensor: kerr_metric,
243            coordinates: coordinates.to_vec(),
244            solution_type: "exact".to_string(),
245            constraints_satisfied: true,
246            physical_parameters: kerr_parameters,
247            solution_domain: "r > M + sqrt(M^2 - a^2)".to_string(),
248        });
249    }
250    
251    Ok(solutions)
252}
253
254pub fn verify_einstein_solution(
255    solution: &EinsteinSolution,
256    stress_energy: Option<&StressEnergyTensor>,
257    _cosmological_constant: Option<SymbolicExpr>
258) -> Result<bool, TensorError> {
259    // Verify that G_μν + Λg_μν = 8πT_μν for the given solution
260    
261    // Calculate Einstein tensor for the solution metric
262    let _einstein_tensor = calculate_einstein_tensor(&solution.metric_tensor, &solution.coordinates)?;
263    
264    // If we have a stress-energy tensor, check field equations
265    if let Some(_t_mu_nu) = stress_energy {
266        // This would involve substituting the metric into field equations
267        // and checking if they're satisfied symbolically or numerically
268        
269        // For now, return true for known exact solutions
270        match solution.solution_type.as_str() {
271            "exact" => Ok(true),
272            _ => Ok(false), // Would need numerical verification
273        }
274    } else {
275        // Vacuum case: check if G_μν + Λg_μν = 0
276        Ok(true) // Placeholder - would need actual verification
277    }
278}
279
280pub fn solve_einstein_constraint_equations(
281    _initial_data: &MetricTensor,
282    _coordinates: &[String]
283) -> Result<Vec<TensorComponent>, TensorError> {
284    // Solve the Hamiltonian and momentum constraints
285    // This is needed for numerical relativity initial value problems
286    
287    let n = _initial_data.len();
288    let mut constraints = Vec::new();
289    
290    // Hamiltonian constraint: R + K² - K_ij K^ij = 16π ρ
291    constraints.push(TensorComponent {
292        indices: vec![],
293        expression: "R + K^2 - K_ij * K^ij - 16 * pi * rho".to_string(),
294    });
295    
296    // Momentum constraints: D_j (K^ij - gamma^ij K) = 8π j^i  
297    for i in 0..n-1 { // Spatial indices only
298        constraints.push(TensorComponent {
299            indices: vec![i],
300            expression: format!("D_j(K^{i}j - gamma^{i}j * K) - 8 * pi * j^{i}", i=i),
301        });
302    }
303    
304    Ok(constraints)
305}
306
307#[cfg(test)]
308mod tests {
309    use super::*;
310
311    #[test]
312    fn test_schwarzschild_solution() {
313        let coords = vec!["t".to_string(), "r".to_string(), "theta".to_string(), "phi".to_string()];
314        let boundary_conditions = vec![];
315        
316        let solutions = solve_spherically_symmetric_vacuum(&coords, &boundary_conditions).unwrap();
317        
318        assert!(!solutions.is_empty());
319        assert_eq!(solutions[0].solution_type, "exact");
320        assert_eq!(solutions[0].coordinates, coords);
321    }
322    
323    #[test]
324    fn test_flrw_solution() {
325        let coords = vec!["t".to_string(), "r".to_string(), "theta".to_string(), "phi".to_string()];
326        let boundary_conditions = vec![];
327        
328        let solutions = solve_flrw_universe(&coords, &boundary_conditions).unwrap();
329        
330        assert!(!solutions.is_empty());
331        assert_eq!(solutions[0].solution_type, "exact");
332        assert!(solutions[0].physical_parameters.contains_key("H"));
333    }
334}