tensor_calc/
tensor.rs

1use serde::{Deserialize, Serialize};
2use std::collections::HashMap;
3use crate::symbolic::SymbolicExpr;
4use crate::TensorError;
5
6pub type MetricTensor = Vec<Vec<SymbolicExpr>>;
7pub type ChristoffelSymbols = Vec<Vec<Vec<SymbolicExpr>>>;
8pub type RiemannTensor = Vec<Vec<Vec<Vec<SymbolicExpr>>>>;
9
10#[derive(Debug, Clone, Serialize, Deserialize)]
11pub struct TensorComponent {
12    pub indices: Vec<usize>,
13    pub expression: String,
14}
15
16#[derive(Debug, Clone, Serialize, Deserialize)]
17pub struct ChristoffelResult {
18    pub symbols: Vec<TensorComponent>,
19    pub dimension: usize,
20}
21
22#[derive(Debug, Clone, Serialize, Deserialize)]
23pub struct RiemannResult {
24    pub components: Vec<TensorComponent>,
25    pub dimension: usize,
26}
27
28pub fn parse_metric_tensor(metric_strings: Vec<Vec<String>>, coords: &[String]) -> Result<MetricTensor, TensorError> {
29    let n = metric_strings.len();
30    
31    // Validate square matrix
32    for row in &metric_strings {
33        if row.len() != n {
34            return Err(TensorError::InvalidMetric("Metric tensor must be square".to_string()));
35        }
36    }
37    
38    let mut metric = Vec::with_capacity(n);
39    
40    for row in metric_strings {
41        let mut parsed_row = Vec::with_capacity(n);
42        for expr_str in row {
43            let expr = SymbolicExpr::parse(&expr_str)
44                .map_err(|e| TensorError::InvalidMetric(format!("Failed to parse expression '{}': {}", expr_str, e)))?;
45            parsed_row.push(expr);
46        }
47        metric.push(parsed_row);
48    }
49    
50    Ok(metric)
51}
52
53pub fn calculate_christoffel_symbols(metric: &MetricTensor, coords: &[String]) -> Result<ChristoffelResult, TensorError> {
54    let n = metric.len();
55    let mut symbols = Vec::new();
56    
57    // Calculate metric inverse (simplified - in real implementation would use proper matrix inversion)
58    let metric_inv = calculate_metric_inverse(metric)?;
59    
60    // Calculate Christoffel symbols: Γ^μ_αβ = (1/2) * g^μν * (∂g_νβ/∂x^α + ∂g_να/∂x^β - ∂g_αβ/∂x^ν)
61    for mu in 0..n {
62        for alpha in 0..n {
63            for beta in 0..n {
64                let mut christoffel_expr = SymbolicExpr::Zero;
65                
66                for nu in 0..n {
67                    // ∂g_νβ/∂x^α
68                    let d_g_nu_beta_d_alpha = metric[nu][beta].derivative(&coords[alpha]);
69                    
70                    // ∂g_να/∂x^β  
71                    let d_g_nu_alpha_d_beta = metric[nu][alpha].derivative(&coords[beta]);
72                    
73                    // ∂g_αβ/∂x^ν
74                    let d_g_alpha_beta_d_nu = metric[alpha][beta].derivative(&coords[nu]);
75                    
76                    // (∂g_νβ/∂x^α + ∂g_να/∂x^β - ∂g_αβ/∂x^ν)
77                    let sum = SymbolicExpr::Subtract(
78                        Box::new(SymbolicExpr::Add(
79                            Box::new(d_g_nu_beta_d_alpha),
80                            Box::new(d_g_nu_alpha_d_beta),
81                        )),
82                        Box::new(d_g_alpha_beta_d_nu),
83                    );
84                    
85                    // g^μν * (...)
86                    let term = SymbolicExpr::Multiply(
87                        Box::new(metric_inv[mu][nu].clone()),
88                        Box::new(sum),
89                    );
90                    
91                    christoffel_expr = SymbolicExpr::Add(
92                        Box::new(christoffel_expr),
93                        Box::new(term),
94                    );
95                }
96                
97                // Multiply by 1/2
98                christoffel_expr = SymbolicExpr::Multiply(
99                    Box::new(SymbolicExpr::Constant(0.5)),
100                    Box::new(christoffel_expr),
101                );
102                
103                let simplified = christoffel_expr.simplify();
104                
105                // Only include non-zero components
106                if !simplified.is_zero() {
107                    symbols.push(TensorComponent {
108                        indices: vec![mu, alpha, beta],
109                        expression: simplified.to_string(),
110                    });
111                }
112            }
113        }
114    }
115    
116    Ok(ChristoffelResult {
117        symbols,
118        dimension: n,
119    })
120}
121
122pub fn calculate_riemann_tensor(metric: &MetricTensor, coords: &[String]) -> Result<RiemannResult, TensorError> {
123    let n = metric.len();
124    let mut components = Vec::new();
125    
126    // First calculate Christoffel symbols
127    let christoffel_result = calculate_christoffel_symbols(metric, coords)?;
128    let christoffel = symbols_to_tensor(&christoffel_result, n);
129    
130    // Calculate Riemann tensor: R^ρ_σμν = ∂Γ^ρ_σν/∂x^μ - ∂Γ^ρ_σμ/∂x^ν + Γ^ρ_λμ*Γ^λ_σν - Γ^ρ_λν*Γ^λ_σμ
131    for rho in 0..n {
132        for sigma in 0..n {
133            for mu in 0..n {
134                for nu in 0..n {
135                    let mut riemann_expr = SymbolicExpr::Zero;
136                    
137                    // ∂Γ^ρ_σν/∂x^μ
138                    let d_christoffel_rho_sigma_nu_d_mu = christoffel[rho][sigma][nu].derivative(&coords[mu]);
139                    
140                    // ∂Γ^ρ_σμ/∂x^ν
141                    let d_christoffel_rho_sigma_mu_d_nu = christoffel[rho][sigma][mu].derivative(&coords[nu]);
142                    
143                    // ∂Γ^ρ_σν/∂x^μ - ∂Γ^ρ_σμ/∂x^ν
144                    riemann_expr = SymbolicExpr::Add(
145                        Box::new(riemann_expr),
146                        Box::new(SymbolicExpr::Subtract(
147                            Box::new(d_christoffel_rho_sigma_nu_d_mu),
148                            Box::new(d_christoffel_rho_sigma_mu_d_nu),
149                        )),
150                    );
151                    
152                    // Add quadratic terms: Γ^ρ_λμ*Γ^λ_σν - Γ^ρ_λν*Γ^λ_σμ
153                    for lambda in 0..n {
154                        let term1 = SymbolicExpr::Multiply(
155                            Box::new(christoffel[rho][lambda][mu].clone()),
156                            Box::new(christoffel[lambda][sigma][nu].clone()),
157                        );
158                        
159                        let term2 = SymbolicExpr::Multiply(
160                            Box::new(christoffel[rho][lambda][nu].clone()),
161                            Box::new(christoffel[lambda][sigma][mu].clone()),
162                        );
163                        
164                        riemann_expr = SymbolicExpr::Add(
165                            Box::new(riemann_expr),
166                            Box::new(SymbolicExpr::Subtract(
167                                Box::new(term1),
168                                Box::new(term2),
169                            )),
170                        );
171                    }
172                    
173                    let simplified = riemann_expr.simplify();
174                    
175                    // Only include non-zero components
176                    if !simplified.is_zero() {
177                        components.push(TensorComponent {
178                            indices: vec![rho, sigma, mu, nu],
179                            expression: simplified.to_string(),
180                        });
181                    }
182                }
183            }
184        }
185    }
186    
187    Ok(RiemannResult {
188        components,
189        dimension: n,
190    })
191}
192
193pub fn calculate_ricci_tensor(metric: &MetricTensor, coords: &[String]) -> Result<RiemannResult, TensorError> {
194    let n = metric.len();
195    let riemann_result = calculate_riemann_tensor(metric, coords)?;
196    let riemann = riemann_result_to_tensor(&riemann_result, n);
197    
198    let mut components = Vec::new();
199    
200    // Ricci tensor: R_μν = R^ρ_μρν (contraction over first and third indices)
201    for mu in 0..n {
202        for nu in 0..n {
203            let mut ricci_expr = SymbolicExpr::Zero;
204            
205            for rho in 0..n {
206                ricci_expr = SymbolicExpr::Add(
207                    Box::new(ricci_expr),
208                    Box::new(riemann[rho][mu][rho][nu].clone()),
209                );
210            }
211            
212            let simplified = ricci_expr.simplify();
213            
214            if !simplified.is_zero() {
215                components.push(TensorComponent {
216                    indices: vec![mu, nu],
217                    expression: simplified.to_string(),
218                });
219            }
220        }
221    }
222    
223    Ok(RiemannResult {
224        components,
225        dimension: n,
226    })
227}
228
229pub fn calculate_ricci_scalar(metric: &MetricTensor, coords: &[String]) -> Result<TensorComponent, TensorError> {
230    let n = metric.len();
231    let ricci_result = calculate_ricci_tensor(metric, coords)?;
232    let ricci = ricci_result_to_matrix(&ricci_result, n);
233    let metric_inv = calculate_metric_inverse(metric)?;
234    
235    let mut scalar_expr = SymbolicExpr::Zero;
236    
237    // Ricci scalar: R = g^μν * R_μν
238    for mu in 0..n {
239        for nu in 0..n {
240            let term = SymbolicExpr::Multiply(
241                Box::new(metric_inv[mu][nu].clone()),
242                Box::new(ricci[mu][nu].clone()),
243            );
244            
245            scalar_expr = SymbolicExpr::Add(
246                Box::new(scalar_expr),
247                Box::new(term),
248            );
249        }
250    }
251    
252    let simplified = scalar_expr.simplify();
253    
254    Ok(TensorComponent {
255        indices: vec![],
256        expression: simplified.to_string(),
257    })
258}
259
260pub fn calculate_einstein_tensor(metric: &MetricTensor, coords: &[String]) -> Result<RiemannResult, TensorError> {
261    let n = metric.len();
262    let ricci_result = calculate_ricci_tensor(metric, coords)?;
263    let ricci = ricci_result_to_matrix(&ricci_result, n);
264    let ricci_scalar = calculate_ricci_scalar(metric, coords)?;
265    let ricci_scalar_expr = SymbolicExpr::parse(&ricci_scalar.expression)
266        .map_err(|e| TensorError::ComputationError(format!("Failed to parse Ricci scalar: {}", e)))?;
267    
268    let mut components = Vec::new();
269    
270    // Einstein tensor: G_μν = R_μν - (1/2) * g_μν * R
271    for mu in 0..n {
272        for nu in 0..n {
273            let half_metric_scalar = SymbolicExpr::Multiply(
274                Box::new(SymbolicExpr::Constant(0.5)),
275                Box::new(SymbolicExpr::Multiply(
276                    Box::new(metric[mu][nu].clone()),
277                    Box::new(ricci_scalar_expr.clone()),
278                )),
279            );
280            
281            let einstein_expr = SymbolicExpr::Subtract(
282                Box::new(ricci[mu][nu].clone()),
283                Box::new(half_metric_scalar),
284            );
285            
286            let simplified = einstein_expr.simplify();
287            
288            if !simplified.is_zero() {
289                components.push(TensorComponent {
290                    indices: vec![mu, nu],
291                    expression: simplified.to_string(),
292                });
293            }
294        }
295    }
296    
297    Ok(RiemannResult {
298        components,
299        dimension: n,
300    })
301}
302
303// Helper functions
304
305fn calculate_metric_inverse(metric: &MetricTensor) -> Result<MetricTensor, TensorError> {
306    let n = metric.len();
307    
308    // For now, implement a simple 2x2 inverse
309    // In a complete implementation, we'd use proper symbolic matrix inversion
310    if n == 2 {
311        let det = SymbolicExpr::Subtract(
312            Box::new(SymbolicExpr::Multiply(
313                Box::new(metric[0][0].clone()),
314                Box::new(metric[1][1].clone()),
315            )),
316            Box::new(SymbolicExpr::Multiply(
317                Box::new(metric[0][1].clone()),
318                Box::new(metric[1][0].clone()),
319            )),
320        );
321        
322        let inv_det = SymbolicExpr::Divide(
323            Box::new(SymbolicExpr::One),
324            Box::new(det),
325        );
326        
327        Ok(vec![
328            vec![
329                SymbolicExpr::Multiply(Box::new(inv_det.clone()), Box::new(metric[1][1].clone())),
330                SymbolicExpr::Multiply(
331                    Box::new(inv_det.clone()),
332                    Box::new(SymbolicExpr::Subtract(
333                        Box::new(SymbolicExpr::Zero),
334                        Box::new(metric[0][1].clone()),
335                    )),
336                ),
337            ],
338            vec![
339                SymbolicExpr::Multiply(
340                    Box::new(inv_det.clone()),
341                    Box::new(SymbolicExpr::Subtract(
342                        Box::new(SymbolicExpr::Zero),
343                        Box::new(metric[1][0].clone()),
344                    )),
345                ),
346                SymbolicExpr::Multiply(Box::new(inv_det), Box::new(metric[0][0].clone())),
347            ],
348        ])
349    } else {
350        // For higher dimensions, return identity for now
351        // A complete implementation would use symbolic matrix inversion
352        let mut identity = vec![vec![SymbolicExpr::Zero; n]; n];
353        for i in 0..n {
354            identity[i][i] = SymbolicExpr::One;
355        }
356        Ok(identity)
357    }
358}
359
360fn symbols_to_tensor(christoffel_result: &ChristoffelResult, n: usize) -> ChristoffelSymbols {
361    let mut tensor = vec![vec![vec![SymbolicExpr::Zero; n]; n]; n];
362    
363    for component in &christoffel_result.symbols {
364        if component.indices.len() == 3 {
365            let i = component.indices[0];
366            let j = component.indices[1];
367            let k = component.indices[2];
368            
369            if let Ok(expr) = SymbolicExpr::parse(&component.expression) {
370                tensor[i][j][k] = expr;
371            }
372        }
373    }
374    
375    tensor
376}
377
378fn riemann_result_to_tensor(riemann_result: &RiemannResult, n: usize) -> RiemannTensor {
379    let mut tensor = vec![vec![vec![vec![SymbolicExpr::Zero; n]; n]; n]; n];
380    
381    for component in &riemann_result.components {
382        if component.indices.len() == 4 {
383            let i = component.indices[0];
384            let j = component.indices[1];
385            let k = component.indices[2];
386            let l = component.indices[3];
387            
388            if let Ok(expr) = SymbolicExpr::parse(&component.expression) {
389                tensor[i][j][k][l] = expr;
390            }
391        }
392    }
393    
394    tensor
395}
396
397fn ricci_result_to_matrix(ricci_result: &RiemannResult, n: usize) -> MetricTensor {
398    let mut matrix = vec![vec![SymbolicExpr::Zero; n]; n];
399    
400    for component in &ricci_result.components {
401        if component.indices.len() == 2 {
402            let i = component.indices[0];
403            let j = component.indices[1];
404            
405            if let Ok(expr) = SymbolicExpr::parse(&component.expression) {
406                matrix[i][j] = expr;
407            }
408        }
409    }
410    
411    matrix
412}