temporal_neural_solver/optimizations/
optimized.rs1use std::arch::x86_64::*;
5use std::alloc::{alloc, dealloc, Layout};
6use std::time::{Duration, Instant};
7
8pub struct OptimizedNeuralNetwork {
10 w1_flat: *mut f32, w2_flat: *mut f32, b1: [f32; 32],
14 b2: [f32; 4],
15
16 hidden_buffer: [f32; 32],
18
19 w1_rows: usize,
21 w1_cols: usize,
22 w2_rows: usize,
23 w2_cols: usize,
24}
25
26impl OptimizedNeuralNetwork {
27 pub fn new() -> Self {
28 unsafe {
29 let w1_layout = Layout::from_size_align(4096 * 4, 32).unwrap();
31 let w2_layout = Layout::from_size_align(128 * 4, 32).unwrap();
32
33 let w1_ptr = alloc(w1_layout) as *mut f32;
34 let w2_ptr = alloc(w2_layout) as *mut f32;
35
36 for i in 0..4096 {
38 *w1_ptr.add(i) = ((i as f32) * 0.001).sin() * 0.1;
39 }
40 for i in 0..128 {
41 *w2_ptr.add(i) = ((i as f32) * 0.002).cos() * 0.2;
42 }
43
44 Self {
45 w1_flat: w1_ptr,
46 w2_flat: w2_ptr,
47 b1: [0.0; 32],
48 b2: [0.0; 4],
49 hidden_buffer: [0.0; 32],
50 w1_rows: 32,
51 w1_cols: 128,
52 w2_rows: 4,
53 w2_cols: 32,
54 }
55 }
56 }
57
58 #[inline(always)]
59 pub unsafe fn forward_simd(&mut self, input: &[f32; 128]) -> [f32; 4] {
60 for i in 0..self.w1_rows {
62 let mut sum = _mm256_setzero_ps();
63
64 for j in (0..self.w1_cols).step_by(8) {
66 let w = _mm256_loadu_ps(self.w1_flat.add(i * self.w1_cols + j));
67 let x = _mm256_loadu_ps(input.as_ptr().add(j));
68 sum = _mm256_fmadd_ps(w, x, sum);
69 }
70
71 let sum_array = std::mem::transmute::<__m256, [f32; 8]>(sum);
73 let mut total = self.b1[i];
74 for k in 0..8 {
75 total += sum_array[k];
76 }
77
78 self.hidden_buffer[i] = total.max(0.0);
80 }
81
82 let mut output = [0.0f32; 4];
84
85 for i in 0..4 {
87 let mut sum = self.b2[i];
88
89 for j in (0..32).step_by(4) {
91 sum += *self.w2_flat.add(i * 32 + j) * self.hidden_buffer[j]
92 + *self.w2_flat.add(i * 32 + j + 1) * self.hidden_buffer[j + 1]
93 + *self.w2_flat.add(i * 32 + j + 2) * self.hidden_buffer[j + 2]
94 + *self.w2_flat.add(i * 32 + j + 3) * self.hidden_buffer[j + 3];
95 }
96
97 output[i] = sum;
98 }
99
100 output
101 }
102}
103
104impl Drop for OptimizedNeuralNetwork {
105 fn drop(&mut self) {
106 unsafe {
107 let w1_layout = Layout::from_size_align(4096 * 4, 32).unwrap();
108 let w2_layout = Layout::from_size_align(128 * 4, 32).unwrap();
109 dealloc(self.w1_flat as *mut u8, w1_layout);
110 dealloc(self.w2_flat as *mut u8, w2_layout);
111 }
112 }
113}
114
115pub struct OptimizedKalmanFilter {
117 state: [f64; 8], diagonal_cov: [f64; 8], process_noise: f64,
120 measurement_noise: f64,
121}
122
123impl OptimizedKalmanFilter {
124 pub fn new() -> Self {
125 Self {
126 state: [0.0; 8],
127 diagonal_cov: [0.1; 8],
128 process_noise: 0.001,
129 measurement_noise: 0.01,
130 }
131 }
132
133 #[inline(always)]
134 pub fn predict_fast(&mut self, dt: f64) -> [f32; 4] {
135 self.state[0] += self.state[4] * dt;
137 self.state[1] += self.state[5] * dt;
138 self.state[2] += self.state[6] * dt;
139 self.state[3] += self.state[7] * dt;
140
141 for i in 0..8 {
143 self.diagonal_cov[i] += self.process_noise;
144 }
145
146 [
148 self.state[0] as f32,
149 self.state[1] as f32,
150 self.state[2] as f32,
151 self.state[3] as f32,
152 ]
153 }
154
155 #[inline(always)]
156 pub fn update_fast(&mut self, measurement: &[f32; 4]) {
157 for i in 0..4 {
159 let error = measurement[i] as f64 - self.state[i];
160 let gain = self.diagonal_cov[i] / (self.diagonal_cov[i] + self.measurement_noise);
161 self.state[i] += gain * error;
162 self.diagonal_cov[i] *= 1.0 - gain;
163 }
164 }
165}
166
167pub struct OptimizedSolver {
169 workspace: [f64; 16],
171 max_iterations: usize,
172}
173
174impl OptimizedSolver {
175 pub fn new() -> Self {
176 Self {
177 workspace: [0.0; 16],
178 max_iterations: 10, }
180 }
181
182 #[inline(always)]
183 pub fn solve_fast(&mut self, jacobian: &[[f32; 4]; 4], b: &[f32; 4]) -> (f64, usize) {
184 for i in 0..4 {
186 self.workspace[i] = b[i] as f64;
187 }
188
189 let mut residual_norm = 0.0;
191 let mut iterations = 0;
192
193 for iter in 0..self.max_iterations {
194 residual_norm = 0.0;
195
196 for i in 0..4 {
198 let mut sum = b[i] as f64;
199
200 for j in 0..4 {
202 if i != j {
203 sum -= jacobian[i][j] as f64 * self.workspace[j];
204 }
205 }
206
207 let diag = jacobian[i][i] as f64;
208 if diag.abs() > 1e-10 {
209 let new_val = sum / diag;
210 let diff = new_val - self.workspace[i];
211 residual_norm += diff * diff;
212 self.workspace[i] = new_val;
213 }
214 }
215
216 iterations = iter + 1;
217
218 if residual_norm < 1e-12 {
219 break;
220 }
221 }
222
223 (residual_norm.sqrt(), iterations)
224 }
225}
226
227pub struct UltraFastTemporalSolver {
229 nn: OptimizedNeuralNetwork,
230 kalman: OptimizedKalmanFilter,
231 solver: OptimizedSolver,
232
233 jacobian_buffer: [[f32; 4]; 4],
235 prediction_buffer: [f32; 4],
236}
237
238impl UltraFastTemporalSolver {
239 pub fn new() -> Self {
240 Self {
241 nn: OptimizedNeuralNetwork::new(),
242 kalman: OptimizedKalmanFilter::new(),
243 solver: OptimizedSolver::new(),
244 jacobian_buffer: [[0.0; 4]; 4],
245 prediction_buffer: [0.0; 4],
246 }
247 }
248
249 #[inline(always)]
251 pub fn predict(&mut self, input: &[f32; 128]) -> ([f32; 4], Duration) {
252 self.predict_optimized(input)
253 }
254
255 #[inline(always)]
256 pub fn predict_optimized(&mut self, input: &[f32; 128]) -> ([f32; 4], Duration) {
257 let start = Instant::now();
258
259 unsafe {
260 let prior = self.kalman.predict_fast(0.001);
262
263 let residual = self.nn.forward_simd(input);
265
266 for i in 0..4 {
268 self.prediction_buffer[i] = prior[i] + residual[i];
269 }
270
271 for i in 0..4 {
273 for j in 0..4 {
274 self.jacobian_buffer[i][j] = if i == j { 1.0 } else { 0.01 };
275 }
276 }
277
278 let (_residual, _iters) = self.solver.solve_fast(&self.jacobian_buffer, &self.prediction_buffer);
280
281 self.kalman.update_fast(&self.prediction_buffer);
283 }
284
285 (self.prediction_buffer, start.elapsed())
286 }
287}
288
289pub struct BatchProcessor {
291 solver: UltraFastTemporalSolver,
292}
293
294impl BatchProcessor {
295 pub fn new() -> Self {
296 Self {
297 solver: UltraFastTemporalSolver::new(),
298 }
299 }
300
301 pub fn process_batch(&mut self, inputs: &[[f32; 128]], batch_size: usize) -> Vec<([f32; 4], Duration)> {
303 let mut results = Vec::with_capacity(batch_size);
304
305 for i in 0..batch_size.min(inputs.len()) {
307 if i + 1 < inputs.len() {
309 unsafe {
310 _mm_prefetch(inputs[i + 1].as_ptr() as *const i8, _MM_HINT_T0);
311 }
312 }
313
314 let result = self.solver.predict_optimized(&inputs[i]);
315 results.push(result);
316 }
317
318 results
319 }
320}
321
322#[cfg(test)]
323mod tests {
324 use super::*;
325
326 #[test]
327 fn test_optimized_performance() {
328 let mut solver = UltraFastTemporalSolver::new();
329 let input = [0.1f32; 128];
330
331 for _ in 0..1000 {
333 let _ = solver.predict_optimized(&input);
334 }
335
336 let mut timings = Vec::new();
338 for _ in 0..1000 {
339 let (_pred, duration) = solver.predict_optimized(&input);
340 timings.push(duration);
341 }
342
343 timings.sort();
344 let p50 = timings[500];
345 let p99 = timings[990];
346 let p999 = timings[999];
347
348 println!("Optimized Performance:");
349 println!(" P50: {:?}", p50);
350 println!(" P99: {:?}", p99);
351 println!(" P99.9: {:?}", p999);
352
353 assert!(p999.as_micros() < 50); }
355}
356
357