1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
//! [`TempStack`] is a linked list data structure based on the [`temp_inst`] crate. The intended use
//! case is that list items are allocated on the call stack; then the list also represents a "stack"
//! with "frames". Via [`temp_inst`], each frame can contain references to data that is available at
//! the point where it is constructed, without having to add lifetime parameters.
//!
//! # Example
//!
//! The following lambda expression parser uses [`TempStack`] as a context that specifies which
//! variables are in scope, in order to determine the
//! [de Bruijn index](https://en.wikipedia.org/wiki/De_Bruijn_index) corresponding to a given
//! variable name.
//!
//! ```
//! # use temp_inst::TempRef;
//! # use crate::temp_stack::TempStack;
//! #
//! #[derive(Clone, PartialEq, Debug)]
//! enum Expr {
//! Var(usize), // A de Bruijn index that specifies which binder the variable references.
//! App(Box<Expr>, Box<Expr>),
//! Lambda(String, Box<Expr>),
//! }
//!
//! // The context containing the variables that are in scope at any given point during
//! // parsing. Note how `Ctx` does not require any lifetime parameters, even though it
//! // references strings with arbitrary lifetimes.
//! type Ctx = TempStack<(), TempRef<str>>;
//!
//! fn parse(s: &str) -> Result<Expr, String> {
//! let root_ctx = Ctx::new_root(());
//! let (expr, s) = parse_expr(s, &root_ctx)?;
//! if !s.is_empty() {
//! return Err(format!("unexpected character at `{s}`"));
//! }
//! Ok(expr)
//! }
//!
//! fn parse_expr<'a>(s: &'a str, ctx: &Ctx) -> Result<(Expr, &'a str), String> {
//! let (expr, mut s) = parse_single_expr(s, ctx)?;
//! let Some(mut expr) = expr else {
//! return Err(format!("expected expression at `{s}`"));
//! };
//! loop {
//! let (arg, r) = parse_single_expr(s, ctx)?;
//! s = r;
//! let Some(arg) = arg else {
//! break;
//! };
//! expr = Expr::App(Box::new(expr), Box::new(arg));
//! }
//! Ok((expr, s))
//! }
//!
//! fn parse_single_expr<'a>(s: &'a str, ctx: &Ctx) -> Result<(Option<Expr>, &'a str), String> {
//! let s = s.trim_ascii_start();
//! if let Some(s) = s.strip_prefix('λ') {
//! let s = s.trim_ascii_start();
//! let name_len = s
//! .find(|ch: char| !ch.is_ascii_alphanumeric())
//! .unwrap_or(s.len());
//! if name_len == 0 {
//! return Err(format!("expected parameter name at `{s}`"));
//! }
//! let (name, s) = s.split_at(name_len);
//! let s = s.trim_ascii_start();
//! let Some(s) = s.strip_prefix('.') else {
//! return Err(format!("expected `.` at `{s}`"));
//! };
//! // Create a new context with `name` added.
//! let body_ctx = ctx.new_frame(name);
//! let (body, s) = parse_expr(s, &body_ctx)?;
//! Ok((Some(Expr::Lambda(name.into(), Box::new(body))), s))
//! } else if let Some(s) = s.strip_prefix('(') {
//! let (body, s) = parse_expr(s, ctx)?;
//! let Some(s) = s.strip_prefix(')') else {
//! return Err(format!("expected `)` at `{s}`"));
//! };
//! Ok((Some(body), s))
//! } else {
//! let name_len = s
//! .find(|ch: char| !ch.is_ascii_alphanumeric())
//! .unwrap_or(s.len());
//! if name_len == 0 {
//! Ok((None, s))
//! } else {
//! let (name, r) = s.split_at(name_len);
//! // Determine the De Bruijn index of the nearest `name` in context.
//! let Some(idx) = ctx.iter().position(|v| v == name) else {
//! return Err(format!("variable `{name}` not found at `{s}`"));
//! };
//! Ok((Some(Expr::Var(idx)), r))
//! }
//! }
//! }
//!
//! assert_eq!(
//! parse("λx.x"),
//! Ok(Expr::Lambda("x".into(), Box::new(Expr::Var(0))))
//! );
//!
//! assert_eq!(
//! parse("λx. x x"),
//! Ok(Expr::Lambda(
//! "x".into(),
//! Box::new(Expr::App(Box::new(Expr::Var(0)), Box::new(Expr::Var(0))))
//! ))
//! );
//!
//! assert_eq!(
//! parse("λx.λy. y (x y x)"),
//! Ok(Expr::Lambda(
//! "x".into(),
//! Box::new(Expr::Lambda(
//! "y".into(),
//! Box::new(Expr::App(
//! Box::new(Expr::Var(0)),
//! Box::new(Expr::App(
//! Box::new(Expr::App(Box::new(Expr::Var(1)), Box::new(Expr::Var(0)))),
//! Box::new(Expr::Var(1)),
//! ))
//! ))
//! ))
//! ))
//! );
//!
//! assert_eq!(
//! parse("λx.λy. (λz.z) (x z x)"),
//! Err("variable `z` not found at `z x)`".into())
//! );
//! ```
#![no_std]
use core::{fmt::Debug, iter::FusedIterator, mem::take, pin::Pin};
use either::Either;
use temp_inst::{TempInst, TempInstPin, TempRefPin, TempRepr, TempReprMut};
/// A linked list consisting of a single item of type `Root` and arbitrarily many items of type
/// `Frame`. Both types must implement [`temp_inst::TempRepr`], which declares them as "temporary
/// representations" of possibly lifetime-dependent types such as references.
///
/// A [`TempStack`] can be constructed and referenced in a mutable or shared fashion, and in the
/// mutable case the usual exclusivity rules apply. However, adding an item never alters the list
/// it was added to; it merely creates a new list that borrows the original one (exclusively or
/// shared).
///
/// # Remarks
///
/// Although the root and frames can consist of arbitrary data via [`temp_inst::SelfRepr`], usually
/// the size of both should be kept small, using references via [`temp_inst::TempRef`] or
/// [`temp_inst::TempRefMut`] instead, for two reasons.
/// * Both root and frame data are stored in the same `enum`, so a large root also enlarges each
/// frame.
/// * The iterators return copies/clones of the frame data. Therefore, if frames are large,
/// iteration should be implemented manually.
#[derive(TempRepr, TempReprMut)]
pub enum TempStack<Root: TempRepr, Frame: TempRepr> {
Root {
data: Root,
},
Frame {
data: Frame,
parent: TempRefPin<TempStack<Root, Frame>>,
},
}
impl<Root: TempRepr, Frame: TempRepr> TempStack<Root, Frame> {
/// Creates a new stack and returns a [`TempInst`] object that only hands out shared references.
pub fn new_root(data: Root::Shared<'_>) -> TempStackFrame<'_, Root, Frame> {
TempInst::new(Either::Left(data))
}
/// Creates a new stack that extends `self` with the given frame, and returns a [`TempInst`]
/// object that only hands out shared references.
pub fn new_frame<'a>(&'a self, data: Frame::Shared<'a>) -> TempStackFrame<'a, Root, Frame> {
TempInst::new(Either::Right((data, self)))
}
/// Returns an iterator that traverses the stack starting at the current frame and ending at the
/// root.
///
/// The iterator returns the data of each frame, and also provides [`TempStackIter::into_root`]
/// to access the root data.
pub fn iter(&self) -> TempStackIter<'_, Root, Frame> {
TempStackIter::new(self)
}
}
impl<Root: TempReprMut, Frame: TempReprMut> TempStack<Root, Frame> {
/// Creates a new stack and returns a [`TempInstPin`] object that can hand out pinned mutable
/// references.
///
/// Note that this requires the resulting object to be pinned, e.g. using [`core::pin::pin!`].
pub fn new_root_mut(data: Root::Mutable<'_>) -> TempStackFrameMut<'_, Root, Frame> {
TempInstPin::new(Either::Left(data))
}
/// Creates a new stack that extends `self` with the given frame, and returns a [`TempInstPin`]
/// object that can hand out pinned mutable references.
///
/// Note that this requires the resulting object to be pinned, e.g. using [`core::pin::pin!`].
pub fn new_frame_mut<'a>(
self: Pin<&'a mut Self>,
data: Frame::Mutable<'a>,
) -> TempStackFrameMut<'a, Root, Frame> {
TempInstPin::new(Either::Right((data, self)))
}
/// Returns an iterator that traverses the stack starting at the current frame and ending at the
/// root, returning mutable frames.
///
/// The iterator returns the data of each frame, and also provides
/// [`TempStackIterMut::into_root`] to access the root data.
pub fn iter_mut(self: Pin<&mut Self>) -> TempStackIterMut<'_, Root, Frame> {
TempStackIterMut::new(self)
}
}
impl<Root: TempRepr + Debug, Frame: TempRepr + Debug> Debug for TempStack<Root, Frame> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str("[")?;
self.fmt_contents(f)?;
f.write_str("]")?;
Ok(())
}
}
impl<Root: TempRepr + Debug, Frame: TempRepr + Debug> TempStack<Root, Frame> {
fn fmt_contents(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
TempStack::Root { data } => data.fmt(f),
TempStack::Frame { data, parent } => {
parent.fmt_contents(f)?;
let separator = if matches!(**parent, TempStack::Root { .. }) {
"; "
} else {
", "
};
f.write_str(separator)?;
data.fmt(f)
}
}
}
}
pub type TempStackRef<'a, Root, Frame> = &'a TempStack<Root, Frame>;
pub type TempStackRefMut<'a, Root, Frame> = Pin<&'a mut TempStack<Root, Frame>>;
pub type TempStackFrame<'a, Root, Frame> = TempInst<'a, TempStack<Root, Frame>>;
pub type TempStackFrameMut<'a, Root, Frame> = TempInstPin<'a, TempStack<Root, Frame>>;
/// An iterator over frames of a shared `TempStack`.
pub struct TempStackIter<'a, Root: TempRepr, Frame: TempRepr>(TempStackRef<'a, Root, Frame>);
impl<'a, Root: TempRepr, Frame: TempRepr> TempStackIter<'a, Root, Frame> {
fn new(start: TempStackRef<'a, Root, Frame>) -> Self {
TempStackIter(start)
}
/// Consumes the iterator and returns the root data of the stack.
/// This method is cheap if the iterator has already reached the end, but needs to traverse the
/// rest of the stack if it has not.
pub fn into_root(mut self) -> Root::Shared<'a> {
loop {
match self.0 {
TempStack::Root { data } => {
return data.get();
}
TempStack::Frame { parent, .. } => {
self.0 = parent.get();
}
}
}
}
}
impl<'a, Root: TempRepr, Frame: TempRepr> Copy for TempStackIter<'a, Root, Frame> {}
impl<'a, Root: TempRepr, Frame: TempRepr> Clone for TempStackIter<'a, Root, Frame> {
fn clone(&self) -> Self {
*self
}
}
impl<'a, Root: TempRepr, Frame: TempRepr> Iterator for TempStackIter<'a, Root, Frame> {
type Item = Frame::Shared<'a>;
fn next(&mut self) -> Option<Self::Item> {
match self.0 {
TempStack::Root { .. } => None,
TempStack::Frame { data, parent } => {
self.0 = parent.get();
Some(data.get())
}
}
}
}
impl<'a, Root: TempRepr, Frame: TempRepr> FusedIterator for TempStackIter<'a, Root, Frame> {}
/// An iterator over frames of a mutable `TempStack`.
pub struct TempStackIterMut<'a, Root: TempReprMut, Frame: TempReprMut>(
// Note that this should never be `None`, but we temporarily need to extract the value in the
// `next` method.
Option<TempStackRefMut<'a, Root, Frame>>,
);
impl<'a, Root: TempReprMut, Frame: TempReprMut> TempStackIterMut<'a, Root, Frame> {
fn new(start: TempStackRefMut<'a, Root, Frame>) -> Self {
TempStackIterMut(Some(start))
}
/// Consumes the iterator and returns the root data of the stack.
/// This method is cheap if the iterator has already reached the end, but needs to traverse the
/// rest of the stack if it has not.
pub fn into_root(self) -> Root::Mutable<'a> {
let mut temp = self.0.unwrap();
// SAFETY: This only implements a pinning projection.
unsafe {
loop {
match temp.get_unchecked_mut() {
TempStack::Root { data } => {
return Pin::new_unchecked(data).get_mut_pinned();
}
TempStack::Frame { parent, .. } => {
temp = Pin::new_unchecked(parent).get_mut_pinned();
}
}
}
}
}
}
impl<'a, Root: TempReprMut, Frame: TempReprMut> Iterator for TempStackIterMut<'a, Root, Frame> {
type Item = Frame::Mutable<'a>;
fn next(&mut self) -> Option<Self::Item> {
let temp = take(&mut self.0).unwrap();
// SAFETY: This only implements a pinning projection.
unsafe {
let temp = temp.get_unchecked_mut();
match temp {
TempStack::Root { .. } => {
self.0 = Some(Pin::new_unchecked(temp));
None
}
TempStack::Frame { data, parent } => {
self.0 = Some(Pin::new_unchecked(parent).get_mut_pinned());
Some(Pin::new_unchecked(data).get_mut_pinned())
}
}
}
}
}
impl<'a, Root: TempReprMut, Frame: TempReprMut> FusedIterator
for TempStackIterMut<'a, Root, Frame>
{
}
#[cfg(test)]
mod tests {
use core::pin::pin;
use temp_inst::{TempRef, TempRefMut};
use super::*;
#[test]
fn empty_stack() {
let root = 42;
let stack = TempStack::<TempRef<i32>, ()>::new_root(&root);
let mut iter = stack.iter();
assert!(iter.next().is_none());
let root_ref = iter.into_root();
assert_eq!(*root_ref, 42);
}
#[test]
fn empty_stack_mut() {
let mut root = 42;
let stack = pin!(TempStack::<TempRefMut<i32>, ()>::new_root_mut(&mut root));
let mut iter = stack.deref_pin().iter_mut();
assert!(iter.next().is_none());
let root_ref = iter.into_root();
assert_eq!(*root_ref, 42);
*root_ref += 1;
assert_eq!(root, 43);
}
#[test]
fn stack_with_frames() {
let root = 42;
let stack = TempStack::<TempRef<i32>, TempRef<i32>>::new_root(&root);
let stack = stack.new_frame(&1);
let stack = stack.new_frame(&2);
let stack = stack.new_frame(&3);
let mut iter = stack.iter();
assert_eq!(iter.next(), Some(&3));
assert_eq!(iter.next(), Some(&2));
assert_eq!(iter.next(), Some(&1));
assert!(iter.next().is_none());
let root_ref = iter.into_root();
assert_eq!(*root_ref, 42);
let iter = stack.iter();
let root_ref = iter.into_root();
assert_eq!(*root_ref, 42);
}
#[test]
fn stack_with_frames_mut() {
let mut root = 42;
let stack = pin!(TempStack::<TempRefMut<i32>, TempRefMut<i32>>::new_root_mut(
&mut root
));
let mut frame1 = 1;
let stack = pin!(stack.deref_pin().new_frame_mut(&mut frame1));
let mut frame2 = 2;
let stack = pin!(stack.deref_pin().new_frame_mut(&mut frame2));
let mut frame3 = 3;
let mut stack = pin!(stack.deref_pin().new_frame_mut(&mut frame3));
let mut iter = stack.as_mut().deref_pin().iter_mut();
let frame3_ref = iter.next().unwrap();
assert_eq!(frame3_ref, &mut 3);
*frame3_ref += 1;
assert_eq!(iter.next(), Some(&mut 2));
let frame1_ref = iter.next().unwrap();
assert_eq!(frame1_ref, &mut 1);
*frame1_ref -= 1;
assert!(iter.next().is_none());
let root_ref = iter.into_root();
assert_eq!(*root_ref, 42);
*root_ref += 1;
let iter = stack.deref_pin().iter_mut();
let root_ref = iter.into_root();
assert_eq!(*root_ref, 43);
assert_eq!(root, 43);
assert_eq!(frame1, 0);
assert_eq!(frame2, 2);
assert_eq!(frame3, 4);
}
#[test]
fn stack_with_branching() {
let root = 42;
let stack = TempStack::<TempRef<i32>, TempRef<i32>>::new_root(&root);
let stack = stack.new_frame(&1);
let stack = stack.new_frame(&2);
let stack2 = stack.new_frame(&11);
let stack = stack.new_frame(&3);
let stack2 = stack2.new_frame(&12);
let stack2 = stack2.new_frame(&13);
let mut iter = stack.iter();
assert_eq!(iter.next(), Some(&3));
assert_eq!(iter.next(), Some(&2));
assert_eq!(iter.next(), Some(&1));
assert!(iter.next().is_none());
let mut iter2 = stack2.iter();
assert_eq!(iter2.next(), Some(&13));
assert_eq!(iter2.next(), Some(&12));
assert_eq!(iter2.next(), Some(&11));
assert_eq!(iter2.next(), Some(&2));
assert_eq!(iter2.next(), Some(&1));
assert!(iter2.next().is_none());
}
#[test]
fn stack_with_branching_mut() {
let mut root = 42;
let stack = pin!(TempStack::<TempRefMut<i32>, TempRefMut<i32>>::new_root_mut(
&mut root
));
let mut frame1 = 1;
let stack = pin!(stack.deref_pin().new_frame_mut(&mut frame1));
let mut frame2 = 2;
let mut stack = pin!(stack.deref_pin().new_frame_mut(&mut frame2));
let mut frame3 = 3;
let stack2 = pin!(stack.as_mut().deref_pin().new_frame_mut(&mut frame3));
let mut iter = stack2.deref_pin().iter_mut();
let frame3_ref = iter.next().unwrap();
assert_eq!(frame3_ref, &mut 3);
*frame3_ref += 1;
assert_eq!(iter.next(), Some(&mut 2));
let frame1_ref = iter.next().unwrap();
assert_eq!(frame1_ref, &mut 1);
*frame1_ref -= 1;
assert!(iter.next().is_none());
let root_ref = iter.into_root();
assert_eq!(*root_ref, 42);
*root_ref += 1;
let mut iter = stack.deref_pin().iter_mut();
assert_eq!(iter.next(), Some(&mut 2));
assert_eq!(iter.next(), Some(&mut 0));
assert!(iter.next().is_none());
let root_ref = iter.into_root();
assert_eq!(*root_ref, 43);
assert_eq!(root, 43);
assert_eq!(frame1, 0);
assert_eq!(frame2, 2);
assert_eq!(frame3, 4);
}
}