1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
use tea_core::prelude::*;
/// Trait for rolling window normalization operations on valid (non-None) elements.
pub trait RollingValidNorm<T: IsNone>: Vec1View<T> {
/// Calculates the rolling z-score (standard score) for valid elements within a window.
///
/// # Arguments
///
/// * `window` - The size of the rolling window.
/// * `min_periods` - The minimum number of observations in window required to have a value.
/// * `out` - Optional output buffer to store the results.
///
/// # Returns
///
/// A vector containing the rolling z-scores.
///
/// # Notes
///
/// The z-score is calculated as (x - mean) / standard_deviation.
/// If the standard deviation is zero or if there are fewer than `min_periods` valid observations,
/// the result will be NaN.
#[no_out]
fn ts_vzscore<O: Vec1<U>, U>(
&self,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> O
where
T::Inner: Number,
f64: Cast<U>,
{
let mut sum = 0.;
let mut sum2 = 0.;
let mut n = 0;
let min_periods = min_periods.unwrap_or(window / 2).min(window);
self.rolling_apply(
window,
|v_rm, v| {
let res = if v.not_none() {
n += 1;
let v = v.unwrap().f64();
sum += v;
sum2 += v * v;
if n >= min_periods {
let n_f64 = n.f64();
let mut var = sum2 / n_f64;
let mean = sum / n_f64;
var -= mean.powi(2);
if var > EPS {
(v - mean) / (var * n_f64 / (n - 1).f64()).sqrt()
} else {
f64::NAN
}
} else {
f64::NAN
}
} else {
f64::NAN
};
if let Some(v) = v_rm {
if v.not_none() {
let v = v.unwrap().f64();
n -= 1;
sum -= v;
sum2 -= v * v
};
}
res.cast()
},
out,
)
}
/// Calculates the rolling min-max normalization for valid elements within a window.
///
/// # Arguments
///
/// * `window` - The size of the rolling window.
/// * `min_periods` - The minimum number of observations in window required to have a value.
/// * `out` - Optional output buffer to store the results.
///
/// # Returns
///
/// A vector containing the rolling min-max normalized values.
///
/// # Notes
///
/// The min-max normalization is calculated as (x - min) / (max - min).
/// If max equals min or if there are fewer than `min_periods` valid observations,
/// the result will be NaN.
#[no_out]
fn ts_vminmaxnorm<O: Vec1<U>, U>(
&self,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> O
where
T::Inner: Number,
f64: Cast<U>,
{
let mut max = T::Inner::min_();
let mut max_idx = 0;
let mut min = T::Inner::max_();
let mut min_idx = 0;
let mut n = 0;
let min_periods = min_periods.unwrap_or(window / 2).min(window);
self.rolling_apply_idx(
window,
|start, end, v| {
if let Some(start) = start {
match (max_idx < start, min_idx < start) {
(true, false) => {
// max value is invalid, find max value again
max = T::Inner::min_();
for i in start..end {
let v = unsafe { self.uget(i) };
if v.not_none() {
let v = v.unwrap();
if v >= max {
(max, max_idx) = (v, i);
}
}
}
},
(false, true) => {
// min value is invalid, find min value again
min = T::Inner::max_();
for i in start..end {
let v = unsafe { self.uget(i) };
if v.not_none() {
let v = v.unwrap();
if v <= min {
(min, min_idx) = (v, i);
}
}
}
},
(true, true) => {
// both max and min value are invalid, find max and min value again
(max, min) = (T::Inner::min_(), T::Inner::max_());
for i in start..end {
let v = unsafe { self.uget(i) };
if v.not_none() {
let v = v.unwrap();
if v >= max {
(max, max_idx) = (v, i);
}
if v <= min {
(min, min_idx) = (v, i);
}
}
}
},
(false, false) => (), // we don't need to find max and min value again
}
}
// check if end position is max or min value
let res = if v.not_none() {
n += 1;
let v = v.unwrap();
if v >= max {
(max, max_idx) = (v, end);
}
if v <= min {
(min, min_idx) = (v, end);
}
if (n >= min_periods) & (max != min) {
((v - min).f64() / (max - min).f64()).cast()
} else {
f64::NAN.cast()
}
} else {
f64::NAN.cast()
};
if let Some(start) = start {
let v = unsafe { self.uget(start) };
if v.not_none() {
n -= 1;
}
}
res
},
out,
)
}
}
impl<T: IsNone, I: Vec1View<T>> RollingValidNorm<T> for I {}
#[cfg(test)]
mod tests {
use tea_core::testing::assert_vec1d_equal_numeric;
use super::*;
#[test]
fn test_ts_zscore() {
let data = vec![1., 2., 3., f64::NAN, 5., 6., 7., f64::NAN, 9., 10.];
let res: Vec<f64> = data.ts_vzscore(4, None);
let expect = vec![
f64::NAN,
0.707107,
1.0,
f64::NAN,
1.091089,
0.872872,
1.0,
f64::NAN,
1.091089,
0.872872,
];
// assert_eq!(res, expect);
assert_vec1d_equal_numeric(&res, &expect, Some(1e-5))
}
}