1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
use std::fmt::Debug;
use tea_core::prelude::*;
#[derive(Clone, Debug)]
pub enum Keep {
First,
Last,
}
pub trait MapValidBasic<T: IsNone>: TrustedLen<Item = T> + Sized {
/// Computes the absolute value of each element in the iterator, ignoring None values.
///
/// This method is similar to `abs()`, but it can handle None values.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(-1), None, Some(2), Some(-3)];
/// let result: Vec<_> = v.titer().vabs().collect();
/// assert_eq!(result, vec![Some(1), None, Some(2), Some(3)]);
/// ```
///
/// See also: [`abs()`](crate::MapBasic::abs)
#[inline]
fn vabs(self) -> impl TrustedLen<Item = T>
where
T::Inner: Number,
{
self.map(|v| v.vabs())
}
/// Forward fill values where the mask is true, ignoring None values.
///
/// # Arguments
///
/// * `mask_func` - A function that returns true for values that should be filled.
/// * `value` - An optional value to fill if head values are still None after forward fill.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(1), None, Some(2), None, Some(3)];
/// let result: Vec<_> = v.titer().ffill_mask(|x| x.is_none(), Some(Some(0))).collect();
/// assert_eq!(result, vec![Some(1), Some(1), Some(2), Some(2), Some(3)]);
/// ```
fn ffill_mask<F: Fn(&T) -> bool>(
self,
mask_func: F,
value: Option<T>,
) -> impl TrustedLen<Item = T> {
let mut last_valid: Option<T> = None;
let f = move |v: T| {
if mask_func(&v) {
if let Some(lv) = last_valid.as_ref() {
lv.clone()
} else if let Some(value) = &value {
value.clone()
} else {
T::none()
}
} else {
// v is valid, update last_valid
last_valid = Some(v.clone());
v
}
};
self.map(f)
}
/// Forward fill None values.
///
/// This method is similar to `ffill()`, but it can handle None values.
///
/// # Arguments
///
/// * `value` - An optional value to fill if head values are still None after forward fill.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(1), None, Some(2), None, Some(3)];
/// let result: Vec<_> = v.titer().ffill(Some(Some(0))).collect();
/// assert_eq!(result, vec![Some(1), Some(1), Some(2), Some(2), Some(3)]);
/// ```
#[inline]
fn ffill(self, value: Option<T>) -> impl TrustedLen<Item = T> {
self.ffill_mask(T::is_none, value)
}
/// Backward fill values where the mask is true, ignoring None values.
///
/// # Arguments
///
/// * `mask_func` - A function that returns true for values that should be filled.
/// * `value` - An optional value to fill if tail values are still None after backward fill.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(1), None, Some(2), None, Some(3)];
/// let result: Vec<_> = v.titer().bfill_mask(|x| x.is_none(), Some(Some(0))).collect();
/// assert_eq!(result, vec![Some(1), Some(2), Some(2), Some(3), Some(3)]);
/// ```
fn bfill_mask<F: Fn(&T) -> bool>(
self,
mask_func: F,
value: Option<T>,
) -> impl TrustedLen<Item = T>
where
Self: DoubleEndedIterator<Item = T>,
{
let mut last_valid: Option<T> = None;
let f = move |v: T| {
if mask_func(&v) {
if let Some(lv) = last_valid.as_ref() {
lv.clone()
} else if let Some(value) = &value {
value.clone()
} else {
T::none()
}
} else {
// v is valid, update last_valid
last_valid = Some(v.clone());
v
}
};
// if we use `self.rev().map(f).rev()` here, we will get a wrong result
// so collect the result to a vec and then return rev iterator
self.rev().map(f).collect_trusted_to_vec().into_iter().rev()
}
/// Backward fill None values.
///
/// This method is similar to `bfill()`, but it can handle None values.
///
/// # Arguments
///
/// * `value` - An optional value to fill if tail values are still None after backward fill.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(1), None, Some(2), None, Some(3)];
/// let result: Vec<_> = v.titer().bfill(Some(Some(0))).collect();
/// assert_eq!(result, vec![Some(1), Some(2), Some(2), Some(3), Some(3)]);
/// ```
#[inline]
fn bfill(self, value: Option<T>) -> impl TrustedLen<Item = T>
where
Self: DoubleEndedIterator<Item = T>,
{
self.bfill_mask(T::is_none, value)
}
/// Clip (limit) the values in an iterator, ignoring None values.
///
/// This method is similar to `clip()`, but it can handle None values.
///
/// # Arguments
///
/// * `lower` - The lower bound.
/// * `upper` - The upper bound.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(1), None, Some(3), Some(5), Some(7)];
/// let result: Vec<_> = v.titer().vclip(Some(2), Some(6)).collect();
/// assert_eq!(result, vec![Some(2), None, Some(3), Some(5), Some(6)]);
/// ```
#[inline]
fn vclip<'a>(self, lower: T, upper: T) -> Box<dyn TrustedLen<Item = T> + 'a>
where
T::Inner: PartialOrd,
T: 'a,
Self: 'a,
{
let lower_flag = lower.not_none();
let upper_flag = upper.not_none();
match (lower_flag, upper_flag) {
(true, true) => {
let (lower_inner, upper_inner) = (lower.clone().unwrap(), upper.clone().unwrap());
Box::new(self.map(move |v| {
if v.not_none() {
let v_inner = v.clone().unwrap();
if v_inner < lower_inner {
lower.clone()
} else if v_inner > upper_inner {
upper.clone()
} else {
v
}
} else {
v
}
}))
},
(true, false) => {
let lower_inner = lower.clone().unwrap();
Box::new(self.map(move |v: T| {
if v.not_none() && (v.clone().unwrap() < lower_inner) {
lower.clone()
} else {
v
}
}))
},
(false, true) => {
let upper_inner = upper.clone().unwrap();
Box::new(self.map(move |v: T| {
if v.not_none() && (v.clone().unwrap() > upper_inner) {
upper.clone()
} else {
v
}
}))
},
(false, false) => Box::new(self),
}
}
/// Fill values where the mask is true, ignoring None values.
///
/// # Arguments
///
/// * `mask_func` - A function that returns true for values that should be filled.
/// * `value` - The value to fill with.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(1), None, Some(3), Some(4), Some(5)];
/// let result: Vec<_> = v.titer().fill_mask(|x| x.map_or(false, |v| v % 2 == 0), Some(0)).collect();
/// assert_eq!(result, vec![Some(1), None, Some(3), Some(0), Some(5)]);
/// ```
#[inline]
fn fill_mask<F: Fn(&T) -> bool>(self, mask_func: F, value: T) -> impl TrustedLen<Item = T> {
self.map(move |v| if mask_func(&v) { value.clone() } else { v })
}
/// Fill None values with a specified value.
///
/// This method is similar to `fill()`, but it can handle None values.
///
/// # Arguments
///
/// * `value` - The value to fill None values with.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(1), None, Some(3), None, Some(5)];
/// let result: Vec<_> = v.titer().fill(Some(0)).collect();
/// assert_eq!(result, vec![Some(1), Some(0), Some(3), Some(0), Some(5)]);
/// ```
#[inline]
fn fill(self, value: T) -> impl TrustedLen<Item = T> {
self.fill_mask(T::is_none, value)
}
/// Shift the elements in the iterator, ignoring None values.
///
/// This method is similar to [`shift()`](crate::MapBasic::shift), but it can handle None values.
///
/// # Arguments
///
/// * `n` - The number of positions to shift. Positive values shift right, negative values shift left.
/// * `value` - An optional value to fill the vacated positions.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(1), None, Some(3), Some(4), Some(5)];
/// let result: Vec<_> = v.titer().vshift(2, Some(Some(0))).collect();
/// assert_eq!(result, vec![Some(0), Some(0), Some(1), None, Some(3)]);
/// ```
///
/// See also: [`shift()`](crate::MapBasic::shift)
fn vshift<'a>(self, n: i32, value: Option<T>) -> Box<dyn TrustedLen<Item = T> + 'a>
where
T: Clone + 'a,
Self: 'a,
{
let len = self.len();
let n_abs = n.unsigned_abs() as usize;
let value = value.unwrap_or_else(|| T::none());
if len <= n_abs {
return Box::new(std::iter::repeat(value).take(len));
}
match n {
n if n > 0 => Box::new(
std::iter::repeat(value)
.take(n_abs)
.chain(self.take(len - n_abs))
.to_trust(len),
),
n if n < 0 => Box::new(
self.skip(n_abs)
.chain(std::iter::repeat(value).take(n_abs))
.to_trust(len),
),
_ => Box::new(self),
}
}
/// Drop None values from the iterator.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(1), None, Some(3), None, Some(5)];
/// let result: Vec<_> = v.titer().drop_none().collect();
/// assert_eq!(result, vec![Some(1), Some(3), Some(5)]);
/// ```
#[inline]
fn drop_none(self) -> impl Iterator<Item = T> {
self.filter(T::not_none)
}
/// Categorize values into bins.
///
/// This function categorizes the values in the iterator into bins defined by the `bins` parameter.
/// It assigns labels to each bin as specified by the `labels` parameter.
///
/// # Arguments
///
/// * `bins` - A slice of bin edges.
/// * `labels` - A slice of labels for each bin.
/// * `right` - If true, intervals are closed on the right. If false, intervals are closed on the left.
/// * `add_bounds` - If true, adds -∞ and +∞ as the first and last bin edges respectively.
///
/// # Returns
///
/// Returns a `TResult` containing a boxed `TrustedLen` iterator of `TResult<T2>` items.
///
/// # Errors
///
/// Returns an error if:
/// - The number of labels doesn't match the number of bins (accounting for `add_bounds`).
/// - A value falls outside the bin ranges.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![1, 3, 5, 7, 9];
/// let bins = vec![4, 8];
/// let labels = vec!["low", "medium", "high"];
/// let result: Vec<_> = v.titer().vcut(&bins, &labels, true, true).unwrap().collect::<Result<Vec<_>, _>>().unwrap();
/// assert_eq!(result, vec!["low", "low", "medium", "medium", "high"]);
/// ```
fn vcut<'a, V2, V3, T2>(
self,
bins: &'a V2,
labels: &'a V3,
right: bool,
add_bounds: bool,
) -> TResult<Box<dyn TrustedLen<Item = TResult<T2>> + 'a>>
where
Self: 'a,
T::Inner: Number + Debug,
(T::Inner, T::Inner): itertools::traits::HomogeneousTuple<Item = T::Inner>,
T2: IsNone + 'a,
V2: Vec1View<T>,
V3: Vec1View<T2>,
{
use itertools::Itertools;
let bins: Vec<T::Inner> = if add_bounds {
if labels.len() != bins.len() + 1 {
tbail!(func=cut, "Number of labels must be one more than the number of bin edges, label: {}, bins: {}", labels.len(), bins.len())
}
vec![T::Inner::min_()]
.into_iter()
.chain(bins.titer().map(IsNone::unwrap))
.chain(vec![T::Inner::max_()])
.collect()
} else {
if labels.len() + 1 != bins.len() {
tbail!(func=cut, "Number of labels must be one fewer than the number of bin edges, label: {}, bins: {}", labels.len(), bins.len())
}
bins.titer().map(IsNone::unwrap).collect_trusted_vec1()
};
if right {
Ok(Box::new(self.map(move |value| {
if value.is_none() {
Ok(T2::none())
} else {
let value = value.unwrap();
let mut out = None;
for (bound, label) in bins
.titer()
.tuple_windows::<(T::Inner, T::Inner)>()
.zip(labels.titer())
{
if (bound.0 < value) && (value <= bound.1) {
out = Some(label.clone());
break;
}
}
out.ok_or_else(|| terr!(func = cut, "value: {:?} not in bins", value))
}
})))
} else {
Ok(Box::new(self.map(move |value| {
if value.is_none() {
Ok(T2::none())
} else {
let value = value.unwrap();
let mut out = None;
for (bound, label) in bins
.titer()
.tuple_windows::<(T::Inner, T::Inner)>()
.zip(labels.titer())
{
if (bound.0 <= value) && (value < bound.1) {
out = Some(label.clone());
break;
}
}
out.ok_or_else(|| terr!(func = cut, "value: {:?} not in bins", value))
}
})))
}
}
/// Returns indices of unique elements in a sorted iterator, keeping either the first or last occurrence.
///
/// # Arguments
///
/// * `keep` - Specifies whether to keep the first or last occurrence of each unique element.
///
/// # Returns
///
/// A boxed iterator yielding indices of unique elements.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::{MapValidBasic, Keep};
///
/// let v = vec![Some(1), Some(1), Some(2), Some(2), Some(3)];
/// let result: Vec<_> = v.titer().vsorted_unique_idx(Keep::First).collect();
/// assert_eq!(result, vec![0, 2, 4]);
///
/// let result: Vec<_> = v.titer().vsorted_unique_idx(Keep::Last).collect();
/// assert_eq!(result, vec![1, 3, 4]);
/// ```
fn vsorted_unique_idx<'a>(self, keep: Keep) -> Box<dyn Iterator<Item = usize> + 'a>
where
T::Inner: PartialEq + 'a + std::fmt::Debug,
Self: 'a,
{
match keep {
Keep::First => {
let mut last_value = None;
let out = self.into_iter().enumerate().filter_map(move |(i, v)| {
if v.not_none() {
let v = v.unwrap();
if last_value == Some(v.clone()) {
None
} else {
last_value = Some(v);
Some(i)
}
} else {
None
}
});
Box::new(out)
},
Keep::Last => {
let mut iter = self.into_iter();
let first_element = iter.next();
let mut last_value = if let Some(v) = first_element {
if v.not_none() {
Some(v.unwrap())
} else {
None
}
} else {
None
};
let out = iter
.map(|v| v.to_opt())
.chain(std::iter::once(None))
.enumerate()
.filter_map(move |(i, v)| {
if v.not_none() {
let v = v.unwrap();
if last_value == Some(v.clone()) {
None
} else {
last_value = Some(v);
Some(i)
}
} else {
let out = if last_value.is_some() { Some(i) } else { None };
last_value = None;
out
}
});
Box::new(out)
},
}
}
/// Returns an iterator over unique elements in a sorted iterator.
///
/// This method removes consecutive duplicate elements from the iterator.
///
/// # Returns
///
/// An iterator yielding unique elements.
///
/// # Examples
///
/// ```
/// use tea_core::prelude::*;
/// use tea_map::MapValidBasic;
///
/// let v = vec![Some(1), Some(1), Some(2), Some(2), Some(3)];
/// let result: Vec<_> = v.titer().vsorted_unique().collect();
/// assert_eq!(result, vec![Some(1), Some(2), Some(3)]);
/// ```
#[allow(clippy::unnecessary_filter_map)]
fn vsorted_unique<'a>(self) -> impl Iterator<Item = T> + 'a
where
T::Inner: PartialEq + 'a,
Self: 'a,
{
let mut value: Option<T::Inner> = None;
self.into_iter().filter_map(move |v| {
if v.not_none() {
let v = v.unwrap();
if let Some(last_v) = value.as_ref() {
if v != last_v.clone() {
value = Some(v.clone());
Some(T::from_inner(v))
} else {
None
}
} else {
value = Some(v.clone());
Some(T::from_inner(v))
}
} else {
None
}
})
}
}
impl<T: IsNone, I: TrustedLen<Item = T>> MapValidBasic<T> for I {}
#[cfg(test)]
mod test {
use tea_core::testing::assert_vec1d_equal_numeric;
use super::*;
#[test]
fn test_clip() {
let v = vec![1, 2, 3, 4, 5];
let res: Vec<_> = v.titer().vclip(2, 4).collect_trusted_vec1();
assert_eq!(res, vec![2, 2, 3, 4, 4]);
let v = vec![1., 2., 3., 4., 5.];
let res: Vec<_> = v.titer().vclip(2., f64::NAN).collect_trusted_vec1();
assert_eq!(&res, &vec![2., 2., 3., 4., 5.]);
let res: Vec<_> = v.titer().vclip(f64::NAN, 4.).collect_trusted_vec1();
assert_eq!(&res, &vec![1., 2., 3., 4., 4.]);
let res: Vec<_> = v.titer().vclip(f64::NAN, f64::NAN).collect_trusted_vec1();
assert_eq!(&res, &vec![1., 2., 3., 4., 5.]);
}
#[test]
fn test_fill() {
let v = vec![f64::NAN, 1., 2., f64::NAN, 3., f64::NAN];
let res: Vec<_> = v.titer().ffill(None).collect();
assert_vec1d_equal_numeric(&res, &vec![f64::NAN, 1., 2., 2., 3., 3.], None);
let res: Vec<_> = v.titer().ffill(Some(0.)).collect();
assert_vec1d_equal_numeric(&res, &vec![0., 1., 2., 2., 3., 3.], None);
let res: Vec<_> = v.titer().bfill(None).collect();
assert_vec1d_equal_numeric(&res, &vec![1., 1., 2., 3., 3., f64::NAN], None);
let res: Vec<_> = v.titer().bfill(Some(0.)).collect();
assert_vec1d_equal_numeric(&res, &vec![1., 1., 2., 3., 3., 0.], None);
let res: Vec<_> = v.titer().fill(0.).collect();
assert_vec1d_equal_numeric(&res, &vec![0., 1., 2., 0., 3., 0.], None);
}
#[test]
fn test_vcut() -> Result<()> {
let v = vec![1, 3, 5, 1, 5, 6, 7, 32, 1];
let bins = vec![2, 5, 8];
let labels = vec![1, 2, 3, 4];
let res1: Vec<_> = v
.titer()
.vcut(&bins, &labels, true, true)?
.try_collect_vec1()?;
assert_eq!(res1, vec![1, 2, 2, 1, 2, 3, 3, 4, 1]);
let res2: Vec<_> = v
.titer()
.vcut(&bins, &labels, false, true)?
.try_collect_trusted_vec1()?;
// bin label mismatch
assert_eq!(res2, vec![1, 2, 3, 1, 3, 3, 3, 4, 1]);
assert!(v.titer().vcut(&[3], &labels, true, true).is_err());
// value not in bins
let res: TResult<Vec<_>> = v
.titer()
.vcut(&[1, 2, 5, 8, 20], &labels, true, false)?
.try_collect_vec1();
assert!(res.is_err());
Ok(())
}
#[test]
fn test_sorted_unique() {
let v = vec![1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6];
let res: Vec<_> = v.titer().vsorted_unique_idx(Keep::First).collect();
assert_eq!(res, vec![0, 2, 5, 6, 10, 12]);
let res: Vec<_> = v.titer().vsorted_unique().collect();
assert_eq!(res, vec![1, 2, 3, 4, 5, 6]);
let res: Vec<_> = v.titer().vsorted_unique_idx(Keep::Last).collect();
assert_eq!(res, vec![1, 4, 5, 9, 11, 12]);
let v = vec![6, 6, 5, 5, 5, 4, 3, 3, 3, 3, 2, 2, 1];
let v2: Vec<_> = v.to_opt_iter().chain(None).collect();
let res: Vec<_> = v2.titer().vsorted_unique_idx(Keep::First).collect();
assert_eq!(res, vec![0, 2, 5, 6, 10, 12]);
let res: Vec<_> = v2.titer().vsorted_unique_idx(Keep::Last).collect();
assert_eq!(res, vec![1, 4, 5, 9, 11, 12]);
let res: Vec<_> = v2.titer().vsorted_unique().collect();
assert_eq!(
res,
vec![Some(6), Some(5), Some(4), Some(3), Some(2), Some(1)]
);
let v3: Vec<_> = v
.iter_cast::<f64>()
.chain(std::iter::once(f64::NAN))
.collect();
let res: Vec<_> = v3.titer().vsorted_unique_idx(Keep::First).collect();
assert_eq!(res, vec![0, 2, 5, 6, 10, 12]);
let res: Vec<_> = v3.titer().vsorted_unique_idx(Keep::Last).collect();
assert_eq!(res, vec![1, 4, 5, 9, 11, 12]);
let res: Vec<_> = v3.titer().vsorted_unique().collect();
assert_eq!(res, vec![6., 5., 4., 3., 2., 1.]);
let v4 = vec![f64::NAN, f64::NAN, 4., 4., 2., 0., 0.];
let res: Vec<_> = v4.titer().vsorted_unique().collect();
assert_eq!(res, vec![4., 2., 0.]);
let res: Vec<_> = v4.titer().vsorted_unique_idx(Keep::First).collect();
assert_eq!(res, vec![2, 4, 5]);
}
}