1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
use std::cmp::PartialOrd;
use std::ops::{Add, AddAssign, DivAssign, MulAssign, Sub, SubAssign};
use num_traits::{MulAdd, Num};
use super::cast::Cast;
use super::isnone::IsNone;
/// Kahan summation, see https://en.wikipedia.org/wiki/Kahan_summation_algorithm
#[inline]
fn kh_sum<T>(sum: T, v: T, c: &mut T) -> T
where
T: Add<Output = T> + Sub<Output = T> + Copy,
{
let y = v - *c;
let t = sum + y;
*c = (t - sum) - y;
t
}
/// A trait representing numeric types with various operations and conversions.
///
/// This trait combines several other traits and provides additional functionality
/// for numeric types. It includes operations for arithmetic, comparison, conversion,
/// and special numeric functions.
///
/// # Type Constraints
///
/// The type implementing this trait must satisfy the following constraints:
/// - `Copy`: The type can be copied bit-for-bit.
/// - `Send`: The type can be safely transferred across thread boundaries.
/// - `Sync`: The type can be safely shared between threads.
/// - `IsNone`: The type has a concept of a "none" value.
/// - `Sized`: The type has a known size at compile-time.
/// - `Default`: The type has a default value.
/// - `Num`: The type supports basic numeric operations.
/// - `AddAssign`, `SubAssign`, `MulAssign`, `DivAssign`: The type supports compound assignment operations.
/// - `PartialOrd`: The type can be partially ordered.
/// - `MulAdd`: The type supports fused multiply-add operations.
/// - `Cast<f64>`, `Cast<f32>`, `Cast<usize>`, `Cast<i32>`, `Cast<i64>`: The type can be cast to these numeric types.
/// - `'static`: The type has a static lifetime.
pub trait Number:
Copy
// + Clone
+ Send
+ Sync
+ IsNone
+ Sized
+ Default
+ Num
+ AddAssign
+ SubAssign
+ MulAssign
+ DivAssign
+ PartialOrd
+ MulAdd
+ Cast<f64>
+ Cast<f32>
+ Cast<usize>
+ Cast<i32>
+ Cast<i64>
+ 'static
{
// type Dtype;
/// Returns the minimum value of the data type.
fn min_() -> Self;
/// Returns the maximum value of the data type.
fn max_() -> Self;
/// Computes the absolute value of the number.
fn abs(self) -> Self;
/// Computes the ceiling of the number.
///
/// For integer types, this is typically the identity function.
#[inline(always)]
fn ceil(self) -> Self {
self
}
/// Computes the floor of the number.
///
/// For integer types, this is typically the identity function.
#[inline(always)]
fn floor(self) -> Self {
self
}
/// Returns the minimum of self and other.
#[inline]
fn min_with(self, other: Self) -> Self {
if other < self {
other
} else {
self
}
}
/// Returns the maximum of self and other.
#[inline]
fn max_with(self, other: Self) -> Self {
if other > self {
other
} else {
self
}
}
/// Casts the number to f32.
#[inline(always)]
fn f32(self) -> f32 {
Cast::<f32>::cast(self)
}
/// Casts the number to f64.
#[inline(always)]
fn f64(self) -> f64 {
Cast::<f64>::cast(self)
}
/// Casts the number to i32.
#[inline(always)]
fn i32(self) -> i32 {
Cast::<i32>::cast(self)
}
/// Casts the number to i64.
#[inline(always)]
fn i64(self) -> i64 {
Cast::<i64>::cast(self)
}
/// Casts the number to usize.
#[inline(always)]
fn usize(self) -> usize {
Cast::<usize>::cast(self)
}
/// Creates a value of type Self using a value of type U using `Cast`.
#[inline(always)]
fn fromas<U>(v: U) -> Self
where
U: Number + Cast<Self>,
Self: 'static,
{
v.to::<Self>()
}
/// Casts self to another type T using `Cast`.
#[inline(always)]
fn to<T: Number>(self) -> T
where
Self: Cast<T>,
{
Cast::<T>::cast(self)
}
/// Performs Kahan summation.
///
/// This method implements the Kahan summation algorithm, which helps reduce
/// numerical error in the sum of a sequence of floating point numbers.
#[inline(always)]
#[must_use]
fn kh_sum(self, v: Self, c: &mut Self) -> Self {
kh_sum(self, v, c)
}
/// Conditionally adds `other` to `self` and increments `n`.
///
/// If `other` is not none, it adds `other` to `self` and increments `n`.
/// Otherwise, it returns `self` unchanged.
#[inline]
fn n_add(self, other: Self, n: &mut usize) -> Self {
// note: only check if other is NaN
// assume that self is not NaN
if other.not_none() {
*n += 1;
self + other
} else {
self
}
}
/// Conditionally multiplies `self` by `other` and increments `n`.
///
/// If `other` is not none, it multiplies `self` by `other` and increments `n`.
/// Otherwise, it returns `self` unchanged.
#[inline]
fn n_prod(self, other: Self, n: &mut usize) -> Self {
// note: only check if other is NaN
// assume that self is not NaN
if other.not_none() {
*n += 1;
self * other
} else {
self
}
}
}
macro_rules! impl_number {
(@ base_impl $dtype:ty, $datatype:ident) => {
#[inline(always)]
fn min_() -> $dtype {
<$dtype>::MIN
}
#[inline(always)]
fn max_() -> $dtype {
<$dtype>::MAX
}
};
// special impl for float
(float $($dtype:ty, $datatype:ident); *) => {
$(impl Number for $dtype {
impl_number!(@ base_impl $dtype, $datatype);
#[inline]
fn ceil(self) -> Self {
self.ceil()
}
#[inline]
fn floor(self) -> Self {
self.floor()
}
#[inline]
fn abs(self) -> Self {
self.abs()
}
})*
};
// special impl for other type
(signed $($dtype:ty, $datatype:ident); *) => {
$(impl Number for $dtype {
impl_number!(@ base_impl $dtype, $datatype);
#[inline]
fn abs(self) -> Self {
self.abs()
}
})*
};
// special impl for other type
(unsigned $($dtype:ty, $datatype:ident); *) => {
$(impl Number for $dtype {
impl_number!(@ base_impl $dtype, $datatype);
#[inline]
fn abs(self) -> Self {
self
}
})*
};
}
impl_number!(
float
f32, F32;
f64, F64
);
impl_number!(
signed
i32, I32;
i64, I64
);
impl_number!(
unsigned
u64, U64;
usize, Usize
);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_ceil() {
fn _ceil<T: Number>(v: T) -> T {
v.ceil()
}
assert_eq!(_ceil(1.23_f64), 2.);
assert_eq!(_ceil(-1.23_f32), -1.);
assert_eq!(_ceil(0_usize), 0);
assert_eq!(_ceil(-3i32), -3);
}
#[test]
fn test_floor() {
fn _floor<T: Number>(v: T) -> T {
v.floor()
}
assert_eq!(_floor(1.23_f64), 1.);
assert_eq!(_floor(-1.23_f32), -2.);
assert_eq!(_floor(0_usize), 0);
assert_eq!(_floor(-3i32), -3);
}
}