1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
mod vec_valid;
use tea_core::prelude::*;
pub use vec_valid::*;
/// Extension trait providing additional aggregation methods for iterables with potentially invalid (None) values.
pub trait AggValidExt<T: IsNone>: IntoIterator<Item = T> + Sized {
/// Computes the sum of valid values filtered by a mask, along with the count of valid elements.
///
/// # Arguments
///
/// * `mask` - An iterable of boolean-like values used to filter the input.
///
/// # Returns
///
/// A tuple containing the count of valid elements and their sum.
#[inline]
fn n_vsum_filter<U, I>(self, mask: I) -> (usize, T::Inner)
where
I: IntoIterator<Item = U>,
U: IsNone,
U::Inner: Cast<bool>,
T::Inner: Number,
{
self.into_iter()
.zip(mask)
.filter_map(|(v, flag)| {
if flag.not_none() {
if flag.unwrap().cast() {
Some(v)
} else {
None
}
} else {
None
}
})
.vfold_n(T::Inner::zero(), |acc, x| acc + x)
}
/// Computes the sum of valid values filtered by a mask.
///
/// # Arguments
///
/// * `mask` - An iterable of boolean-like values used to filter the input.
///
/// # Returns
///
/// The sum of valid elements, or None if no valid elements are found.
#[inline]
fn n_sum_filter<U, I>(self, mask: I) -> Option<T::Inner>
where
I: IntoIterator<Item = U>,
U: IsNone,
U::Inner: Cast<bool>,
T::Inner: Number,
{
let (n, sum) = self.n_vsum_filter(mask);
if n > 0 {
Some(sum)
} else {
None
}
}
/// Computes the mean of valid values filtered by a mask.
///
/// # Arguments
///
/// * `mask` - An iterable of boolean-like values used to filter the input.
/// * `min_periods` - The minimum number of valid elements required to compute the mean.
///
/// # Returns
///
/// The mean of valid elements, or NaN if the number of valid elements is less than `min_periods`.
#[inline]
fn vmean_filter<U, I>(self, mask: I, min_periods: usize) -> f64
where
I: IntoIterator<Item = U>,
U: IsNone,
U::Inner: Cast<bool>,
T::Inner: Number,
{
let (n, sum) = self.n_vsum_filter(mask);
if n >= min_periods {
sum.f64() / n.f64()
} else {
f64::NAN
}
}
/// Computes the kurtosis of the data.
///
/// # Arguments
///
/// * `min_periods` - The minimum number of valid elements required to compute the kurtosis.
///
/// # Returns
///
/// The kurtosis of the data, or NaN if the number of valid elements is less than `min_periods`.
fn vkurt(self, min_periods: usize) -> f64
where
T::Inner: Number,
{
let (mut m1, mut m2, mut m3, mut m4) = (0., 0., 0., 0.);
let n = self.vapply_n(|v| {
let v = v.f64();
m1 += v;
let v2 = v * v;
m2 += v2;
m3 += v2 * v;
m4 += v2 * v2;
});
if n < min_periods {
return f64::NAN;
}
let mut res = if n >= 4 {
let n_f64 = n.f64();
m1 /= n_f64; // Ex
m2 /= n_f64; // Ex^2
let var = m2 - m1.powi(2);
if var <= EPS {
0.
} else {
let var2 = var.powi(2); // var^2
m4 /= n_f64; // Ex^4
m3 /= n_f64; // Ex^3
let mean2_var = m1.powi(2) / var; // (mean / std)^2
(m4 - 4. * m1 * m3) / var2 + 6. * mean2_var + 3. * mean2_var.powi(2)
}
} else {
f64::NAN
};
if res.not_none() && res != 0. {
res = 1. / ((n - 2) * (n - 3)).f64()
* ((n.pow(2) - 1).f64() * res - (3 * (n - 1).pow(2)).f64())
}
res
}
}
impl<I: IntoIterator<Item = T>, T: IsNone> AggValidExt<T> for I {}