tch_plus/vision/
dataset.rs1use crate::data::Iter2;
3use crate::{IndexOp, Tensor};
4use rand::Rng;
5
6#[derive(Debug)]
7pub struct Dataset {
8 pub train_images: Tensor,
9 pub train_labels: Tensor,
10 pub test_images: Tensor,
11 pub test_labels: Tensor,
12 pub labels: i64,
13}
14
15impl Dataset {
16 pub fn train_iter(&self, batch_size: i64) -> Iter2 {
17 Iter2::new(&self.train_images, &self.train_labels, batch_size)
18 }
19
20 pub fn test_iter(&self, batch_size: i64) -> Iter2 {
21 Iter2::new(&self.test_images, &self.test_labels, batch_size)
22 }
23}
24
25pub fn random_flip(t: &Tensor) -> Tensor {
29 let size = t.size();
30 if size.len() != 4 {
31 panic!("unexpected shape for tensor {t:?}")
32 }
33 let output = t.zeros_like();
34 for batch_index in 0..size[0] {
35 let mut output_view = output.i(batch_index);
36 let t_view = t.i(batch_index);
37 let src = if rand::random() { t_view } else { t_view.flip([2]) };
38 output_view.copy_(&src)
39 }
40 output
41}
42
43pub fn random_crop(t: &Tensor, pad: i64) -> Tensor {
47 let size = t.size();
48 if size.len() != 4 {
49 panic!("unexpected shape for tensor {t:?}")
50 }
51 let sz_h = size[2];
52 let sz_w = size[3];
53 let padded = t.reflection_pad2d([pad, pad, pad, pad]);
54 let output = t.zeros_like();
55 for bindex in 0..size[0] {
56 let mut output_view = output.i(bindex);
57 let start_w = rand::thread_rng().gen_range(0..2 * pad);
58 let start_h = rand::thread_rng().gen_range(0..2 * pad);
59 let src = padded.i((bindex, .., start_h..start_h + sz_h, start_w..start_w + sz_w));
60 output_view.copy_(&src)
61 }
62 output
63}
64
65pub fn random_cutout(t: &Tensor, sz: i64) -> Tensor {
68 let size = t.size();
69 if size.len() != 4 || sz > size[2] || sz > size[3] {
70 panic!("unexpected shape for tensor {t:?} {sz}")
71 }
72 let mut output = t.zeros_like();
73 output.copy_(t);
74 for bindex in 0..size[0] {
75 let start_h = rand::thread_rng().gen_range(0..size[2] - sz + 1);
76 let start_w = rand::thread_rng().gen_range(0..size[3] - sz + 1);
77 let _output =
78 output.i((bindex, .., start_h..start_h + sz, start_w..start_w + sz)).fill_(0.0);
79 }
80 output
81}
82
83pub fn augmentation(t: &Tensor, flip: bool, crop: i64, cutout: i64) -> Tensor {
84 let mut t = t.shallow_clone();
85 if flip {
86 t = random_flip(&t);
87 }
88 if crop > 0 {
89 t = random_crop(&t, crop);
90 }
91 if cutout > 0 {
92 t = random_cutout(&t, cutout);
93 }
94 t
95}