1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
#![deny(warnings)]
#![warn(missing_docs)]
#![warn(clippy::missing_docs_in_private_items)]

//! `task_pool` offers a flexible abstraction for composing and distributing work within a fixed hardware threadpool. To that end, it offers the following features:
//!
//! - The ability to define and compose sources of work
//! - The ability to create hardware threadpool and consume those sources
//! - A variety of high-level abstractions for scheduling, such as awaitable tasks
//!
//! ### Usage
//!
//! To use `task_pool`, there are three steps:
//!
//! 1. Creating and initializing [`WorkProvider`] instances (such as a queue or chain of multiple queues)
//! 2. Creating a hardware [`TaskPool`] which consumes those instances
//! 3. Spawning high-level tasks on the [`WorkProvider`]s which are handled by the threadpool
//!
//! The following example shows these steps in action:
//!
//! ```rust
//! # use task_pool::*;
//! // 1. Create a queue from which we can spawn tasks
//! let queue = TaskQueue::<Fifo>::default();
//!
//! // 2. Create a threadpool that draws from the provided queue. Forget the threadpool so that it runs indefinitely.
//! TaskPool::new(queue.clone(), 4).forget();
//!
//! // 3. Spawn a task into the queue and synchronously await its completion.
//! assert_eq!(queue.spawn(once(|| { println!("This will execute on background thread."); 2 })).join(), 2);
//!
//! // ...or, asynchronously await its completion.
//! # async fn hide() {
//! # let queue = TaskQueue::<Fifo>::default();
//! assert_eq!(queue.spawn(once(|| { println!("This will execute on background thread."); 2 })).await, 2);
//! # }
//! ```

use arc_swap::*;
use fxhash::*;
use priority_queue::priority_queue::*;
use private::*;
use std::collections::*;
use std::future::*;
use std::hash::*;
use std::marker::*;
use std::mem::*;
use std::ops::*;
use std::sync::atomic::*;
use std::sync::*;
use std::task::*;
use takecell::*;

/// A persistent source of work for multiple threads.
pub trait WorkProvider: 'static + Send + Sync {
    /// Gets a reference to the notifier which raises an event when new work is available.
    fn change_notifier(&self) -> &ChangeNotifier;
    /// Obtains the next unit of queued work from the provider.
    fn next_task(&self) -> Option<Box<dyn '_ + WorkUnit>>;
}

/// A provider which multiplexes work units from other providers, in a fixed priority order.
#[derive(Default)]
pub struct ChainedWorkProvider {
    /// The notifier used to alert listeners when new work is available.
    notifier: Arc<ChangeNotifier>,
    /// The set of providers from which work will be drawn.
    providers: Vec<ChainedWorkProviderEntry>,
}

impl ChainedWorkProvider {
    /// Adds a provider to the chain. When the chain is queried for new work, it
    /// will attempt to use this provider when all previously-added providers are empty.
    pub fn with(mut self, provider: impl WorkProvider) -> Self {
        let notifier_cloned = self.notifier.clone();
        let listener = provider
            .change_notifier()
            .add_listener(move || notifier_cloned.notify());
        self.providers.push(ChainedWorkProviderEntry {
            listener,
            provider: Box::new(provider),
        });
        self
    }
}

impl WorkProvider for ChainedWorkProvider {
    fn change_notifier(&self) -> &ChangeNotifier {
        &self.notifier
    }

    fn next_task(&self) -> Option<Box<dyn '_ + WorkUnit>> {
        for entry in &self.providers {
            if let Some(task) = entry.provider.next_task() {
                return Some(task);
            }
        }

        None
    }
}

impl std::fmt::Debug for ChainedWorkProvider {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ChainedWorkProvider").finish()
    }
}

/// Stores one provider in a provider chain.
#[allow(dead_code)]
struct ChainedWorkProviderEntry {
    /// The listener handle which ensures that notifications from the provider are received.
    pub listener: ChangeNotificationListener,
    /// The work provider.
    pub provider: Box<dyn WorkProvider>,
}

/// A single, atomic unit of work that one thread should process.
pub trait WorkUnit {
    /// Executes this task on the current thread.
    fn execute(self: Box<Self>);
}

impl<F: FnOnce()> WorkUnit for F {
    fn execute(self: Box<Self>) {
        self();
    }
}

/// Offers a composable way to listen for the availability of new work from providers.
#[derive(Default)]
pub struct ChangeNotifier {
    /// The listeners that are registered to this change notifier.
    listeners: wasm_sync::RwLock<Vec<Weak<dyn Fn() + Send + Sync>>>,
}

impl ChangeNotifier {
    /// Informs all registered listeners that a change has occurred.
    pub fn notify(&self) {
        for listener in &*self.listeners.read().expect("Could not acquire read lock.") {
            if let Some(to_execute) = listener.upgrade() {
                to_execute();
            }
        }
    }

    /// Registers the specified callback to be invoked upon change. Returns a listener that
    /// must be kept alive to receive notifications.
    pub fn add_listener(
        &self,
        listener: impl 'static + Fn() + Send + Sync,
    ) -> ChangeNotificationListener {
        let mut listeners = self
            .listeners
            .write()
            .expect("Could not acquire write lock.");
        Self::clear_dead_listeners(&mut listeners);
        let result = Arc::new(listener) as Arc<dyn Fn() + Send + Sync>;
        listeners.push(Arc::downgrade(&result));
        ChangeNotificationListener(result)
    }

    /// Removes all dead listeners from the listeners list.
    fn clear_dead_listeners(listeners: &mut Vec<Weak<dyn Fn() + Send + Sync>>) {
        unsafe {
            let mut finish = 0;
            let len = listeners.len();
            listeners.set_len(0);
            let view = listeners.spare_capacity_mut();

            for i in 0..len {
                let item = view.get_unchecked_mut(i);
                if item.assume_init_ref().strong_count() == 0 {
                    item.assume_init_drop();
                } else {
                    view.swap(i, finish);
                    finish += 1;
                }
            }

            listeners.set_len(finish);
        }
    }
}

impl std::fmt::Debug for ChangeNotifier {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ChangeNotifier").finish()
    }
}

/// Manages the lifetime of a registered change notification callback. Upon drop,
/// the associated callback will no longer be invoked.
pub struct ChangeNotificationListener(Arc<dyn Fn() + Send + Sync>);

impl std::fmt::Debug for ChangeNotificationListener {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_tuple("ChangeNotificationListener").finish()
    }
}

/// Controls a set of background threads that execute work from a provider.
#[allow(dead_code)]
pub struct TaskPool {
    /// The listener and control block.
    change_listener_inner: Option<(ChangeNotificationListener, Arc<TaskPoolInner>)>,
}

impl TaskPool {
    /// Creates a new pool that draws work from the given provider, with the specified number of background threads.
    pub fn new(provider: impl WorkProvider, threads: usize) -> Self {
        Self::with_spawner(provider, threads, |_, f| {
            std::thread::spawn(f);
        })
    }

    /// Creates a new pool that draws work from the given provider, with the specified number of background threads.
    /// The custom spawning function is invoked to create each thread.
    pub fn with_spawner(
        provider: impl WorkProvider,
        threads: usize,
        mut spawner: impl FnMut(usize, Box<dyn 'static + FnOnce() + Send>),
    ) -> Self {
        let inner = Arc::new(TaskPoolInner::new(provider));

        for id in 0..threads {
            let inner_clone = inner.clone();
            spawner(id, Box::new(move || inner_clone.run()));
        }

        let inner_clone = inner.clone();
        let change_listener = inner
            .provider()
            .change_notifier()
            .add_listener(move || inner_clone.notify_changed());

        Self {
            change_listener_inner: Some((change_listener, inner)),
        }
    }

    /// Drops this task pool without stopping the associated threads. The threads
    /// become leaked, and will run for the program's duration.
    pub fn forget(mut self) {
        unsafe {
            forget(
                replace(&mut self.change_listener_inner, None)
                    .unwrap_unchecked()
                    .0,
            );
        }
    }
}

impl Drop for TaskPool {
    fn drop(&mut self) {
        if let Some((_, inner)) = &self.change_listener_inner {
            inner.stop();
        }
    }
}

/// Coordinates work between threads for a task pool.
struct TaskPoolInner {
    /// The provider from which work can be drawn.
    work_provider: Box<dyn WorkProvider>,
    /// A counter which is used to determine when new tasks become available.
    task_counter: AtomicI32,
    /// A condition variable which is notified whenever the provider has new work.
    on_change: wasm_sync::Condvar,
    /// A lock utilized to ensure coherency between the task counter values that threads observe.
    lock: wasm_sync::Mutex<()>,
}

impl TaskPoolInner {
    /// Creates a new control block using the given provider.
    pub fn new(provider: impl WorkProvider) -> Self {
        Self {
            work_provider: Box::new(provider),
            task_counter: AtomicI32::new(1),
            on_change: wasm_sync::Condvar::default(),
            lock: wasm_sync::Mutex::default(),
        }
    }

    /// Gets the provider associated with this pool.
    pub fn provider(&self) -> &dyn WorkProvider {
        &*self.work_provider
    }

    /// Notifies the pool that new work is available from the provider.
    #[allow(unused_variables)]
    pub fn notify_changed(&self) {
        let guard = self.lock.lock().expect("Could not acquire mutex.");
        let old_value = self.task_counter.load(Ordering::Acquire);
        if old_value.is_negative() {
            let mut new_value = -old_value + 1;
            if new_value == i32::MAX - 1 {
                new_value = 1;
            }
            self.task_counter.store(new_value, Ordering::Release);
            self.on_change.notify_all();
        }
        else {
            let mut new_value = old_value + 1;
            if new_value == i32::MAX - 1 {
                new_value = 1;
            }
            self.task_counter.store(new_value, Ordering::Release);
        }
    }

    /// Executes the work in this pool as a background thread, repeatedly loading
    /// new work and sleeping when none is available.
    pub fn run(&self) {
        loop {
            let task_value = self.task_counter.load(Ordering::Acquire);
            match task_value.cmp(&0) {
                std::cmp::Ordering::Less => self.wait_for_change::<false>(task_value),
                std::cmp::Ordering::Equal => return,
                std::cmp::Ordering::Greater => {
                    if let Some(unit) = self.work_provider.next_task() {
                        unit.execute();
                    } else {
                        self.wait_for_change::<true>(task_value);
                    }
                }
            }
        }
    }

    /// Stops this pool and cancels all threads.
    #[allow(unused_variables)]
    pub fn stop(&self) {
        let guard = self.lock.lock().expect("Could not acquire mutex.");
        self.task_counter.store(0, Ordering::Release);
        self.on_change.notify_all();
    }

    /// Waits for new work to become available based upon the previous task value.
    fn wait_for_change<const FLIP_COUNTER: bool>(&self, task_value: i32) {
        let guard = self.lock.lock().expect("Could not acquire mutex.");
        let mut new_value = self.task_counter.load(Ordering::Acquire);

        if FLIP_COUNTER && new_value == task_value {
            new_value = -new_value;
            self.task_counter.store(new_value, Ordering::Release);
        }

        if new_value.is_negative() {
            drop(self.on_change.wait(guard));
        }
    }
}

/// Provides a group of work units that compose a task.
pub trait TaskProvider: 'static + Send + Sync {
    /// Gets the next task to execute.
    fn next_task(&self) -> Option<Box<dyn WorkUnit>>;
}

/// Represents a task that returns a result of the given type.
pub trait TaskCollection<T>: TaskProvider + Sized {
    /// Gets the result from this task.
    fn result(&self) -> T;
}

/// A handle to a queued group of work units, which output a single result.
#[derive(Debug)]
pub struct Task<T, B: QueueBacking> {
    /// The control block for this task.
    control: Arc<TaskControl>,
    /// A pointer to the function which extracts the result for the task.
    result: fn(*const ()) -> T,
    /// The task queue which owns the control block.
    backing: Arc<TaskQueueHolder<B>>,
}

impl<T, B: QueueBacking> Task<T, B> {
    /// Creates a new task for the given collection and backing.
    fn new<C: TaskCollection<T>>(provider: C, backing: Arc<TaskQueueHolder<B>>) -> Self {
        unsafe {
            let control = Arc::new(TaskControl::new(provider));
            let result = transmute(C::result as fn(&C) -> T);

            Self {
                control,
                result,
                backing,
            }
        }
    }

    /// Gets the control block for this task.
    fn control(&self) -> Arc<TaskControl> {
        self.control.clone()
    }

    /// Cancels this task, preventing any further threads from performing its work.
    pub fn cancel(self) {
        self.control.cancel();
    }

    /// Whether the task has been completed yet.
    pub fn complete(&self) -> bool {
        self.control.complete()
    }

    /// Attempts to get the result of this task if it has been completed. Otherwise, returns
    /// the original task.
    pub fn result(self) -> Result<T, Self> {
        if self.complete() {
            Ok(self.join())
        } else {
            Err(self)
        }
    }

    /// Joins the current thread with this task, completing all remaining work.
    /// After all work is complete, yields the result.
    pub fn join(self) -> T {
        unsafe {
            while let Some(work) = self.control.collection().next_task() {
                work.execute();
            }

            self.control.cancel();

            if self.complete() {
                self.get_result()
            } else {
                let waker = CondvarWaker::default();
                let guard = waker.lock.lock().unwrap_unchecked();
                self.control.set_result_waker(waker.as_waker());
                drop(waker.on_wake.wait_while(guard, |()| !self.complete()));
                self.get_result()
            }
        }
    }

    /// Joins with the remaining work on this task, completing all units while they are
    /// available. Returns immediately if there are outstanding units in progress on other threads.
    pub fn join_work(&self) {
        while let Some(work) = self.control.collection().next_task() {
            work.execute();
        }
    }

    /// Gets the result of this task.
    unsafe fn get_result(&self) -> T {
        (self.result)(transmute::<_, (*const (), *const ())>(self.control.collection()).0)
    }
}

impl<T, P: Ord + Send> Task<T, Priority<P>> {
    /// Updates the priority of this task to the specified value.
    pub fn set_priority(&mut self, priority: P) {
        unsafe {
            self.backing
                .inner
                .lock()
                .unwrap_unchecked()
                .queued
                .inner
                .change_priority(&PriorityHolder(self.control.clone()), priority);
        }
    }
}

impl<T, B: QueueBacking> Future for Task<T, B> {
    type Output = T;

    fn poll(self: std::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        unsafe {
            if self.complete() {
                Poll::Ready(self.get_result())
            } else {
                self.control.set_result_waker(cx.waker().clone());
                Poll::Pending
            }
        }
    }
}

/// A structure which interally alerts a condvar upon wake.
#[derive(Clone, Default)]
struct CondvarWaker {
    /// The inner backing for the waker.
    inner: Arc<CondvarWakerInner>,
}

impl CondvarWaker {
    /// Converts this to a waker.
    pub fn as_waker(&self) -> Waker {
        unsafe {
            Waker::from_raw(Self::clone_waker(
                &self.inner as *const Arc<CondvarWakerInner> as *const (),
            ))
        }
    }

    /// Clones the waker.
    ///
    /// # Safety
    ///
    /// For this function to be sound, inner must be a valid pointer to an `Arc<CondvarWakerInner>`.
    unsafe fn clone_waker(inner: *const ()) -> RawWaker {
        unsafe {
            let value = &*(inner as *const Arc<CondvarWakerInner>);
            let data = Box::into_raw(Box::new(value.clone()));

            RawWaker::new(
                data as *const (),
                &RawWakerVTable::new(
                    Self::clone_waker,
                    Self::wake_waker,
                    Self::wake_by_ref_waker,
                    Self::drop_waker,
                ),
            )
        }
    }

    /// Wakes the waker, and consumes the pointer.
    ///
    /// # Safety
    ///
    /// For this function to be sound, inner must be a valid owned pointer to an `Arc<CondvarWakerInner>`.
    unsafe fn wake_waker(inner: *const ()) {
        Self::wake_by_ref_waker(inner);
        Self::drop_waker(inner);
    }

    /// Wakes the waker.
    ///
    /// # Safety
    ///
    /// For this function to be sound, inner must be a valid pointer to an `Arc<CondvarWakerInner>`.
    #[allow(unused_variables)]
    unsafe fn wake_by_ref_waker(inner: *const ()) {
        let inner = &*(inner as *const Arc<CondvarWakerInner>);
        let guard = inner.lock.lock().expect("Could not lock mutex");
        inner.on_wake.notify_all();
    }

    /// Drops the waker, consuming the given pointer.
    ///
    /// # Safety
    ///
    /// For this function to be sound, inner must be a valid owned pointer to an `Arc<CondvarWakerInner>`.
    unsafe fn drop_waker(inner: *const ()) {
        drop(Box::from_raw(inner as *mut Arc<CondvarWakerInner>));
    }
}

impl Deref for CondvarWaker {
    type Target = CondvarWakerInner;

    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

/// Stores the inner state for a condition variable waker.
#[derive(Default)]
struct CondvarWakerInner {
    /// The lock that should be used for waiting.
    lock: wasm_sync::Mutex<()>,
    /// The condition variable that is alerted on wake.
    on_wake: wasm_sync::Condvar,
}

/// Marks a task queue as executing events in a first-in-first-out order.
#[derive(Debug)]
pub struct Fifo {
    /// The inner storage for the queue.
    inner: VecDeque<Arc<TaskControl>>,
}

impl QueueBacking for Fifo {
    fn new() -> Self {
        Self {
            inner: VecDeque::new(),
        }
    }

    fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    fn next(&mut self) -> Option<Arc<TaskControl>> {
        self.inner.pop_front()
    }
}

impl PushPopQueueBacking for Fifo {
    fn push(&mut self, task: Arc<TaskControl>) {
        self.inner.push_back(task);
    }
}

/// Marks a task queue as executing events in a last-in-first-out order.
#[derive(Debug)]
pub struct Lifo {
    /// The inner storage for the queue.
    inner: Vec<Arc<TaskControl>>,
}

impl QueueBacking for Lifo {
    fn new() -> Self {
        Self { inner: Vec::new() }
    }

    fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    fn next(&mut self) -> Option<Arc<TaskControl>> {
        self.inner.pop()
    }
}

impl PushPopQueueBacking for Lifo {
    fn push(&mut self, task: Arc<TaskControl>) {
        self.inner.push(task);
    }
}

/// Implements hashing and reference-equality semantics for task pointers.
#[derive(Debug)]
struct PriorityHolder(pub Arc<TaskControl>);

impl Deref for PriorityHolder {
    type Target = Arc<TaskControl>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl PartialEq for PriorityHolder {
    fn eq(&self, other: &Self) -> bool {
        Arc::ptr_eq(&self.0, &other.0)
    }
}

impl Eq for PriorityHolder {}

impl Hash for PriorityHolder {
    fn hash<H: Hasher>(&self, state: &mut H) {
        state.write_usize(Arc::as_ptr(&self.0) as usize)
    }
}

/// Marks a task queue as executing events in a user-defined priority order.
#[derive(Debug)]
pub struct Priority<P: 'static + Ord + Send> {
    /// The backing queue for events.
    inner: PriorityQueue<PriorityHolder, P, FxBuildHasher>,
}

impl<P: Ord + Send> QueueBacking for Priority<P> {
    fn new() -> Self {
        Self {
            inner: PriorityQueue::default(),
        }
    }

    fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    fn next(&mut self) -> Option<Arc<TaskControl>> {
        self.inner.pop().map(|x| x.0 .0)
    }
}

/// Sends ordered tasks to a pool for background processing.
#[derive(Debug)]
pub struct TaskQueue<B: QueueBacking> {
    /// The implementation holder for this queue.
    inner: Arc<TaskQueueHolder<B>>,
}

impl<B: PushPopQueueBacking> TaskQueue<B> {
    /// Joins the pool in executing the given task. Both the current thread and the background
    /// threads complete the task's work. Semantically, this is equivalent to calling `spawn(task).join()`,
    /// but is more efficient by ensuring that the present thread always receives at least one work item.
    pub fn join<T>(&self, task: impl TaskCollection<T>) -> T {
        let work = Task::new(task, self.inner.clone());
        let next_job = work.control.collection().next_task();

        self.push_control(work.control());

        if let Some(job) = next_job {
            job.execute();
        }

        work.join()
    }

    /// Spawns a new task into the queue.
    pub fn spawn<T>(&self, task: impl TaskCollection<T>) -> Task<T, B> {
        let work = Task::new(task, self.inner.clone());
        self.push_control(work.control());
        work
    }

    /// Pushes the given task control into the work queue.
    fn push_control(&self, control: Arc<TaskControl>) {
        unsafe {
            let mut queue = self.inner.inner.lock().unwrap_unchecked();

            if queue.queued.is_empty() {
                self.inner.notifier.notify();
            }

            queue.queued.push(control);
        }
    }
}

impl<P: Ord + Send + Sync> TaskQueue<Priority<P>> {
    /// Joins the pool in executing the given task. Both the current thread and the background
    /// threads complete the task's work. Semantically, this is equivalent to calling `spawn(task).join()`,
    /// but is more efficient by ensuring that the present thread always receives at least one work item.
    pub fn join<T>(&self, priority: P, task: impl TaskCollection<T>) -> T {
        let work = Task::new(task, self.inner.clone());
        let next_job = work.control.collection().next_task();

        self.push_control(priority, work.control());

        if let Some(job) = next_job {
            job.execute();
        }

        work.join()
    }

    /// Spawns a new task into the queue, with the given priority.
    pub fn spawn<T>(&self, priority: P, task: impl TaskCollection<T>) -> Task<T, Priority<P>> {
        let work = Task::new(task, self.inner.clone());
        self.push_control(priority, work.control());
        work
    }

    /// Pushes the given task control into the work queue.
    fn push_control(&self, priority: P, control: Arc<TaskControl>) {
        unsafe {
            let mut queue = self.inner.inner.lock().unwrap_unchecked();

            if queue.queued.is_empty() {
                self.inner.notifier.notify();
            }

            queue.queued.inner.push(PriorityHolder(control), priority);
        }
    }
}

impl<B: QueueBacking> Default for TaskQueue<B> {
    fn default() -> Self {
        Self {
            inner: Arc::new(TaskQueueHolder {
                notifier: ChangeNotifier::default(),
                inner: wasm_sync::Mutex::new(TaskQueueInner {
                    current: None,
                    queued: B::new(),
                }),
            }),
        }
    }
}

impl<B: QueueBacking> Clone for TaskQueue<B> {
    fn clone(&self) -> Self {
        Self {
            inner: self.inner.clone(),
        }
    }
}

impl<B: QueueBacking> WorkProvider for TaskQueue<B> {
    fn change_notifier(&self) -> &ChangeNotifier {
        &self.inner.notifier
    }

    fn next_task(&self) -> Option<Box<dyn WorkUnit>> {
        unsafe {
            let mut inner = self.inner.inner.lock().unwrap_unchecked();

            loop {
                if let Some(current) = &inner.current {
                    if current.increment_in_progress() {
                        if let Some(unit) = current.collection().next_task() {
                            let control = current.clone();
                            return Some(Box::new(move || {
                                unit.execute();
                                control.decrement_in_progress()
                            }));
                        } else {
                            current.cancel();
                            current.decrement_in_progress();
                        }
                    }
                }

                inner.current = inner.queued.next();
                inner.current.as_ref()?;
            }
        }
    }
}

/// Holds the backing implementation for a task queue.
#[derive(Debug)]
struct TaskQueueHolder<B: QueueBacking> {
    /// A notifier that may be used to alert other threads to newly-available work.
    notifier: ChangeNotifier,
    /// The inner queue state.
    inner: wasm_sync::Mutex<TaskQueueInner<B>>,
}

/// Maintains the current state of a task queue.
#[derive(Debug)]
struct TaskQueueInner<B: QueueBacking> {
    /// The piece of in-progress work, if any.
    current: Option<Arc<TaskControl>>,
    /// The queue that holds upcoming work.
    queued: B,
}

/// Returns a queueable task that executes a single closure one time.
pub fn once<T: 'static + Send>(f: impl 'static + FnOnce() -> T + Send) -> impl TaskCollection<T> {
    /// Ensures that the task's output is always treated as sync, because it won't be accessed on multiple threads.
    struct SyncWrapper<T: Send>(T);
    unsafe impl<T: Send> Sync for SyncWrapper<T> {}

    /// Represents a task that executes a single closure once, returning the result.
    struct OnceTask<T: 'static + Send> {
        /// The closure to execute.
        f: TakeOwnCell<Box<dyn WorkUnit>>,
        /// The result of the closure.
        result: Arc<ArcSwapOption<SyncWrapper<T>>>,
    }

    impl<T: Send> TaskProvider for OnceTask<T> {
        fn next_task(&self) -> Option<Box<dyn WorkUnit>> {
            self.f.take()
        }
    }

    impl<T: Send> TaskCollection<T> for OnceTask<T> {
        fn result(&self) -> T {
            unsafe {
                Arc::into_inner(
                    self.result
                        .swap(None)
                        .expect("Task was not yet complete or already taken."),
                )
                .unwrap_unchecked()
                .0
            }
        }
    }

    unsafe impl<T: Send> Send for OnceTask<T> {}
    unsafe impl<T: Send> Sync for OnceTask<T> {}

    let result = Arc::new(ArcSwapOption::const_empty());
    let result_cloned = result.clone();
    OnceTask {
        f: TakeOwnCell::new(Box::new(move || {
            result_cloned.store(Some(Arc::new(SyncWrapper(f()))));
        })),
        result,
    }
}

/// Hides implementation details from external crates.
mod private {
    use super::*;

    /// Provides the backing for a task queue.
    pub trait QueueBacking: 'static + Send {
        /// Creates a new instance of the backing queue.
        fn new() -> Self;
        /// Whether this queue is empty.
        fn is_empty(&self) -> bool;
        /// Gets the next item in the queue, if any.
        fn next(&mut self) -> Option<Arc<TaskControl>>;
    }

    /// Denotes a task queue with a simple push-pop ordering scheme for tasks.
    pub trait PushPopQueueBacking: QueueBacking {
        /// Pushes the given control block onto the task queue.
        fn push(&mut self, task: Arc<TaskControl>);
    }

    /// Manages the execution of work for a task.
    pub struct TaskControl {
        /// The collection of work associated with the task.
        collection: Box<dyn TaskProvider>,
        /// The number of work units in-progress.
        pub in_progress: AtomicUsize,
        /// A waker that should by used to notify other threads when this task has completed.
        result_waker: ArcSwapOption<Waker>,
    }

    impl TaskControl {
        /// The magic number used to atomically signal a task being cancelled.
        const CANCEL_FLAG: usize = 1 << (usize::BITS - 1);

        /// Creates a new task controller.
        pub fn new(provider: impl TaskProvider) -> Self {
            let collection = Box::new(provider);
            let in_progress = AtomicUsize::default();
            let result_waker = ArcSwapOption::const_empty();

            Self {
                collection,
                in_progress,
                result_waker,
            }
        }

        /// Cancels this task.
        pub fn cancel(&self) {
            self.in_progress
                .fetch_or(Self::CANCEL_FLAG, Ordering::Release);
        }

        /// Gets the collection of work associated with this task.
        pub fn collection(&self) -> &dyn TaskProvider {
            &*self.collection
        }

        /// Determines whether this task has completed all processing.
        pub fn complete(&self) -> bool {
            self.in_progress.load(Ordering::Acquire) == Self::CANCEL_FLAG
        }

        /// Increments the number of in-progress tasks by one, returning whether this task has been cancelled.
        pub fn increment_in_progress(&self) -> bool {
            self.in_progress
                .fetch_update(Ordering::AcqRel, Ordering::Acquire, |x| {
                    (x < Self::CANCEL_FLAG).then_some(x + 1)
                })
                .is_ok()
        }

        /// Decrements the number of in-progress tasks by the specified amount.
        pub fn decrement_in_progress(&self) {
            if self.in_progress.fetch_sub(1, Ordering::AcqRel) == Self::CANCEL_FLAG + 1 {
                if let Some(value) = &*self.result_waker.load() {
                    value.wake_by_ref();
                }
            }
        }

        /// Sets a waker that will be notified when the result of this computation is available.
        pub fn set_result_waker(&self, waker: Waker) {
            self.result_waker.store(Some(Arc::new(waker)));
        }
    }

    impl std::fmt::Debug for TaskControl {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            f.debug_struct("TaskControl")
                .field("in_progress", &self.in_progress)
                .field("result_waker", &self.result_waker)
                .finish()
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use futures_executor::*;

    async fn execute_background() {
        let queue = TaskQueue::<Fifo>::default();
        TaskPool::new(queue.clone(), 4).forget();

        assert_eq!(
            queue
                .spawn(once(|| {
                    println!("This will execute on background thread.");
                    2
                }))
                .await,
            2
        );
    }

    #[test]
    fn execute_double() {
        let queue_a = TaskQueue::<Fifo>::default();
        let queue_b = TaskQueue::<Lifo>::default();

        let first_task = queue_a.spawn(once(|| 2));
        let second_task = queue_b.spawn(once(|| 2));

        TaskPool::new(
            ChainedWorkProvider::default()
                .with(queue_a.clone())
                .with(queue_b.clone()),
            4,
        )
        .forget();

        assert_eq!(first_task.join(), second_task.join());
    }

    #[test]
    fn execute_double_twice() {
        let queue_a = TaskQueue::<Fifo>::default();
        let queue_b = TaskQueue::<Lifo>::default();

        let first_task = queue_a.spawn(once(|| 2));
        let second_task = queue_b.spawn(once(|| 2));

        TaskPool::new(
            ChainedWorkProvider::default()
                .with(queue_a.clone())
                .with(queue_b.clone()),
            1,
        )
        .forget();

        assert_eq!(first_task.join(), second_task.join());

        for _i in 0..1000 {
            let third_task =
                queue_a.spawn(once(|| std::thread::sleep(std::time::Duration::new(0, 10))));
            let fourth_task = queue_b.spawn(once(|| {
                std::thread::sleep(std::time::Duration::new(0, 200))
            }));
            assert_eq!(third_task.join(), fourth_task.join());
        }
    }

    #[test]
    fn execute_background_blocking() {
        block_on(execute_background());
    }
}