1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
use core::ptr;
use num_traits::ToPrimitive;
use rand::{rngs::SmallRng, Rng, SeedableRng};
use std::{
    any::type_name,
    cell::RefCell,
    cmp::Ordering,
    hint::black_box,
    io, mem,
    ops::{Add, Div, RangeInclusive},
    rc::Rc,
    str::Utf8Error,
};
use thiserror::Error;
use timer::{ActiveTimer, Timer};

pub mod cli;
pub mod dylib;
pub mod generators;
#[cfg(target_os = "linux")]
pub mod linux;

const NS_TO_MS: usize = 1_000_000;

#[derive(Debug, Error)]
pub enum Error {
    #[error("No measurements given")]
    NoMeasurements,

    #[error("Invalid string pointer from FFI")]
    InvalidFFIString(Utf8Error),

    #[error("Spi::self() was already called")]
    SpiSelfWasMoved,

    #[error("Unable to load library symbol")]
    UnableToLoadSymbol(#[source] libloading::Error),

    #[error("Unknown sampler type. Available options are: flat and linear")]
    UnknownSamplerType,

    #[error("IO Error")]
    IOError(#[from] io::Error),
}

/// Registers benchmark in the system
///
/// Macros accepts a list of functions that produce any [`IntoBenchmarks`] type. All of the benchmarks
/// created by those functions are registered in the harness.
///
/// ## Example
/// ```rust
/// use std::time::Instant;
/// use tango_bench::{benchmark_fn, IntoBenchmarks, tango_benchmarks};
///
/// fn time_benchmarks() -> impl IntoBenchmarks {
///     [benchmark_fn("current_time", || Instant::now())]
/// }
///
/// tango_benchmarks!(time_benchmarks());
/// ```
#[macro_export]
macro_rules! tango_benchmarks {
    ($($func_expr:expr),+) => {
        /// Type checking tango_init() function
        const TANGO_INIT: $crate::dylib::ffi::InitFn = tango_init;

        /// Exported function for initializing the benchmark harness
        #[no_mangle]
        unsafe extern "C" fn tango_init() {
            let mut benchmarks = vec![];
            $(benchmarks.extend($crate::IntoBenchmarks::into_benchmarks($func_expr));)*
            $crate::dylib::__tango_init(benchmarks)
        }

    };
}

/// Main entrypoint for benchmarks
///
/// This macro generate `main()` function for the benchmark harness. Can be used in a form with providing
/// measurement settings:
/// ```rust
/// use tango_bench::{tango_main, tango_benchmarks, MeasurementSettings};
///
/// // Register benchmarks
/// tango_benchmarks!([]);
///
/// tango_main!(MeasurementSettings {
///     samples_per_haystack: 1000,
///     min_iterations_per_sample: 10,
///     max_iterations_per_sample: 10_000,
///     ..Default::default()
/// });
/// ```
#[macro_export]
macro_rules! tango_main {
    ($settings:expr) => {
        fn main() -> $crate::cli::Result<std::process::ExitCode> {
            // Initialize Tango for SelfVTable usage
            unsafe { tango_init() };
            $crate::cli::run($settings)
        }
    };
    () => {
        tango_main! {$crate::MeasurementSettings::default()}
    };
}

pub fn benchmark_fn<O, F: Fn() -> O + 'static>(
    name: &'static str,
    func: F,
) -> Box<dyn MeasureTarget> {
    assert!(!name.is_empty());
    Box::new(SimpleFunc { name, func })
}

pub trait MeasureTarget {
    /// Measures the performance if the function
    ///
    /// Returns the cumulative execution time (all iterations) with nanoseconds precision,
    /// but not necessarily accuracy. Usually this time is get by `clock_gettime()` call or some other
    /// platform-specific system call.
    ///
    /// This method should use the same arguments for measuring the test function unless [`next_haystack()`]
    /// method is called. Only then new set of input arguments should be generated. Although it is allowed
    /// to call this method without first calling [`next_haystack()`]. In which case first haystack should be
    /// generated automatically.
    ///
    /// [`next_haystack()`]: Self::next_haystack()
    fn measure(&mut self, iterations: usize) -> u64;

    /// Estimates the number of iterations achievable within given time.
    ///
    /// Time span is given in milliseconds (`time_ms`). Estimate can be an approximation and it is important
    /// for implementation to be fast (in the order of 10 ms).
    /// If possible the same input arguments should be used when building the estimate.
    /// If the single call of a function is longer than provided timespan the implementation should return 0.
    fn estimate_iterations(&mut self, time_ms: u32) -> usize;

    /// Generates next haystack for the measurement
    ///
    /// Calling this method should update internal haystack used for measurement. Returns `true` if update happend,
    /// `false` if implementation doesn't support haystack generation.
    /// Haystack/Needle distinction is described in [`Generator`] trait.
    fn next_haystack(&mut self) -> bool;

    /// Synchronize RNG state
    ///
    /// If this implementation has linked generator with RNG state, this method should delegate to
    /// [`Generator::sync()`]
    fn sync(&mut self, seed: u64);

    /// Name of the benchmark
    fn name(&self) -> &str;
}

struct SimpleFunc<F> {
    name: &'static str,
    func: F,
}

impl<O, F: Fn() -> O> MeasureTarget for SimpleFunc<F> {
    fn measure(&mut self, iterations: usize) -> u64 {
        if mem::needs_drop::<O>() {
            let mut result = Vec::with_capacity(iterations);
            let start = ActiveTimer::start();
            for _ in 0..iterations {
                result.push(black_box((self.func)()));
            }
            let time = ActiveTimer::stop(start);
            drop(result);
            time
        } else {
            let start = ActiveTimer::start();
            for _ in 0..iterations {
                black_box((self.func)());
            }
            ActiveTimer::stop(start)
        }
    }

    fn estimate_iterations(&mut self, time_ms: u32) -> usize {
        let median = median_execution_time(self, 11) as usize;
        time_ms as usize * NS_TO_MS / median
    }

    fn next_haystack(&mut self) -> bool {
        false
    }

    fn name(&self) -> &str {
        self.name
    }

    fn sync(&mut self, _: u64) {}
}

/// Implementation of a [`MeasureTarget`] which uses [`Generator`] to generates a new payload for a function
/// each new sample.
pub struct GenFunc<F, G: Generator> {
    f: Rc<RefCell<F>>,
    g: Rc<RefCell<G>>,
    haystack: Option<G::Haystack>,
    name: String,
}

impl<F, O, G> GenFunc<F, G>
where
    G: Generator,
    F: Fn(&G::Haystack, &G::Needle) -> O,
{
    pub fn new(name: &str, f: F, g: G) -> Self {
        let f = Rc::new(RefCell::new(f));
        let g = Rc::new(RefCell::new(g));
        Self::from_ref_cell(name, f, g)
    }

    fn from_ref_cell(name: &str, f: Rc<RefCell<F>>, g: Rc<RefCell<G>>) -> Self {
        Self {
            name: format!("{}/{}", name, g.borrow().name()),
            haystack: None,
            f,
            g,
        }
    }
}

impl<F, O, G> MeasureTarget for GenFunc<F, G>
where
    G: Generator,
    F: Fn(&G::Haystack, &G::Needle) -> O,
{
    fn measure(&mut self, iterations: usize) -> u64 {
        let mut g = self.g.borrow_mut();
        let haystack = &*self.haystack.get_or_insert_with(|| g.next_haystack());
        let f = self.f.borrow_mut();

        if mem::needs_drop::<O>() {
            let mut result = Vec::with_capacity(iterations);
            let start = ActiveTimer::start();
            for _ in 0..iterations {
                let needle = g.next_needle(haystack);
                result.push(black_box((f)(haystack, &needle)));
            }
            let time = ActiveTimer::stop(start);
            drop(result);
            time
        } else {
            let start = ActiveTimer::start();
            for _ in 0..iterations {
                let needle = g.next_needle(haystack);
                black_box((f)(haystack, &needle));
            }
            ActiveTimer::stop(start)
        }
    }

    fn estimate_iterations(&mut self, time_ms: u32) -> usize {
        // Here we relying on the fact that measure() is not generating a new haystack
        // without a call to next_haystack()
        let median = median_execution_time(self, 10);
        (time_ms as usize * NS_TO_MS) / median as usize
    }

    fn next_haystack(&mut self) -> bool {
        self.haystack = Some(self.g.borrow_mut().next_haystack());
        true
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn sync(&mut self, seed: u64) {
        self.g.borrow_mut().sync(seed)
    }
}

/// Matrix of functions is used to perform benchmark with different generator strategies.
///
/// It is a common task to benchmark function with different payload size and/or different structure of the payload.
/// `BenchmarkMatrix` creates a new [`MeasureTarget`] for each unique combination of [`Generator`]
/// and tested function.
///
/// # Example
/// ```rust
/// use tango_bench::{generators::RandomVec, BenchmarkMatrix, IntoBenchmarks};
///
/// fn sum_positive(haystack: &Vec<u32>, _: &()) -> u32 {
///     haystack.iter().copied().filter(|v| *v > 0).sum()
/// }
///
/// fn sum_benchmarks() -> impl IntoBenchmarks {
///     BenchmarkMatrix::with_params([100, 1_000, 10_000], RandomVec::new)
///         .add_function("sum_positive", sum_positive)
/// }
/// ```
pub struct BenchmarkMatrix<G> {
    generators: Vec<Rc<RefCell<G>>>,
    functions: Vec<Box<dyn MeasureTarget>>,
}

impl<G: Generator> BenchmarkMatrix<G> {
    pub fn new(generator: G) -> Self {
        let generator = Rc::new(RefCell::new(generator));
        Self {
            generators: vec![generator],
            functions: vec![],
        }
    }

    /// New matrix with generator created for a given set of parameters
    pub fn with_params<P>(params: impl IntoIterator<Item = P>, generator: impl Fn(P) -> G) -> Self {
        let generators: Vec<_> = params
            .into_iter()
            .map(generator)
            .map(RefCell::new)
            .map(Rc::new)
            .collect();
        Self {
            generators,
            functions: vec![],
        }
    }

    /// Add a new generator to the matrix for each parameter in the given iterator.
    pub fn add_generators_with_params<P>(
        mut self,
        params: impl IntoIterator<Item = P>,
        generator: impl Fn(P) -> G,
    ) -> Self {
        let generators = params
            .into_iter()
            .map(generator)
            .map(RefCell::new)
            .map(Rc::new);
        self.generators.extend(generators);
        self
    }

    pub fn add_function<F, O>(mut self, name: &str, f: F) -> Self
    where
        G: 'static,
        F: Fn(&G::Haystack, &G::Needle) -> O + 'static,
    {
        let f = Rc::new(RefCell::new(f));
        self.generators
            .iter()
            .map(Rc::clone)
            .map(|g| GenFunc::from_ref_cell(name, Rc::clone(&f), g))
            .map(Box::new)
            .for_each(|f| self.functions.push(f));
        self
    }
}

impl<G> IntoBenchmarks for BenchmarkMatrix<G> {
    fn into_benchmarks(self) -> Vec<Box<dyn MeasureTarget>> {
        assert!(!self.functions.is_empty(), "No functions was given");
        self.functions
    }
}

pub trait IntoBenchmarks {
    fn into_benchmarks(self) -> Vec<Box<dyn MeasureTarget>>;
}

impl<const N: usize> IntoBenchmarks for [Box<dyn MeasureTarget>; N] {
    fn into_benchmarks(self) -> Vec<Box<dyn MeasureTarget>> {
        self.into_iter().collect()
    }
}

impl IntoBenchmarks for Vec<Box<dyn MeasureTarget>> {
    fn into_benchmarks(self) -> Vec<Box<dyn MeasureTarget>> {
        self
    }
}

/// Generates the payload for the benchmarking functions
///
/// One of the most important parts of the benchmarking process is generating the payload to test the algorithm. This /// is what this trait is doing. Test function registered in the system can accepts two arguments:
/// - *haystack* - usually the data structure we're testing the algorithm on
/// - *needle* - the supplementary used to test the algorithm.
///
/// ## Haystack
/// Haystack is typically some sort of a collection that is used in benchmarking. It can be quite large and
/// expensive to generate, because it is generated once per sample or less. The frequency of haystack generation
/// is controlled by [`MeasurementSettings::samples_per_haystack`].
///
/// ## Needle
/// Needle is usually some type of query that is presented to the algorithm. In case of searching algorithm it
/// can be value we search in the collection.
///
/// Important distinction between haystack and needle is that haystack generation is not included in timing while
/// needle generation is a part of measurement loop. Therefore needle generation should be relativley lightweight.
///
/// Sometimes haystack generation might be so expensive that it makes sense to leave haystack fixed and provide
/// randomness by generating different needles. For example, instead of generating new random `Vec<T>` for each sample
/// it might be more practical to generate a single `Vec` and a new `Range<usize>` as a haystack at each iteration.
///
/// It might be the case that the algorithm being tested is not using both type of values.
/// In this case corresponding value type should unit type – `()`.
/// Depending on the type of algorithm you might not need to generate both of them. Here are some examples:
///
/// | Algorithm | Haystack | Needle |
/// |----------|----------|--------|
/// | Searching in a string | String | substrung to search for and/or range to search over |
/// | Searching in a collection | Collection | Value to search for and/or range to search over |
/// | Soring | Collection | – |
/// | Numerical computation: factorial, DP problems, etc. | – | Input parameters |
///
/// Tango orchestrates the generating of haystack and needle and guarantees that both benchmarking
/// functions are called with the same input parameters. Therefore performance difference is predictable.
pub trait Generator {
    type Haystack;
    type Needle;

    /// Generates next random haystack for the benchmark
    ///
    /// All iterations within sample are using the same haystack. Haystack are changed only between samples
    /// (see. [`MeasureTarget::next_haystack()`]).
    fn next_haystack(&mut self) -> Self::Haystack;

    /// Generates next random needle for the benchmark
    ///
    /// This method should be relatively lightweight, because the execution time of this method is included
    /// in reported by the benchmark time. Implementation are given haystack generated by
    /// [`Self::next_haystack()`] which will be used for benchmark execution.
    fn next_needle(&mut self, haystack: &Self::Haystack) -> Self::Needle;

    /// Syncs internal RNG-state of this generator with given seed
    ///
    /// For benchmarks to be predictable the harness periodically synchronize the RNG state of all the generators.
    /// If applicable, implementations should set internal RNG state with the value derived from given `seed`.
    /// Implementation are free to transform seed value in any meaningfull way (like taking only lower 32 bits)
    /// as long as this transformation is deterministic.
    fn sync(&mut self, seed: u64);

    /// Name of generator
    fn name(&self) -> &str {
        let name = type_name::<Self>();
        if let Some(idx) = name.rfind("::") {
            // it's safe to operate on byte offsets here because ':' symbols is 1-byte ascii
            &name[idx + 2..]
        } else {
            name
        }
    }
}

pub(crate) trait Reporter {
    fn on_complete(&mut self, results: &RunResult);
}

/// Describes basic settings for the benchmarking process
///
/// This structure is passed to [`cli::run()`].
///
/// Should be created only with overriding needed properties, like so:
/// ```rust
/// use tango_bench::MeasurementSettings;
///
/// let settings = MeasurementSettings {
///     min_iterations_per_sample: 1000,
///     ..Default::default()
/// };
/// ```
#[derive(Clone, Copy, Debug)]
pub struct MeasurementSettings {
    pub filter_outliers: bool,

    /// The number of samples per one generated haystack
    pub samples_per_haystack: usize,

    /// Minimum number of iterations in a sample for each of 2 tested functions
    pub min_iterations_per_sample: usize,

    /// The number of iterations in a sample for each of 2 tested functions
    pub max_iterations_per_sample: usize,

    pub sampler_type: SamplerType,

    /// Size of a CPU cache firewall in KBytes
    ///
    /// If set, the scheduler will perform a dummy data read between samples generation to spoil the CPU cache
    ///
    /// Cache firewall is a way to reduce the impact of the CPU cache on the benchmarking process. It tries
    /// to minimize discrepancies in performance between two algorithms due to the CPU cache state.
    pub cache_firewall: Option<usize>,

    /// If true, scheduler will perform a yield of control back to the OS before taking each sample
    ///
    /// Yielding control to the OS is a way to reduce the impact of OS scheduler on the benchmarking process.
    pub yield_before_sample: bool,
}

#[derive(Clone, Copy, Debug)]
pub enum SamplerType {
    Flat,
    Linear,
    Random,
}

/// Performs a dummy reads from memory to spoil given amount of CPU cache
///
/// Uses cache aligned data arrays to perform minimum amount of reads possible to spoil the cache
struct CacheFirewall {
    cache_lines: Vec<CacheLine>,
}

impl CacheFirewall {
    fn new(bytes: usize) -> Self {
        let n = bytes / mem::size_of::<CacheLine>();
        let cache_lines = vec![CacheLine::default(); n];
        Self { cache_lines }
    }

    fn issue_read(&self) {
        for line in &self.cache_lines {
            // Because CacheLine is aligned on 64 bytes it is enough to read single element from the array
            // to spoil the whole cache line
            unsafe { ptr::read_volatile(&line.0[0]) };
        }
    }
}

#[repr(C)]
#[repr(align(64))]
#[derive(Default, Clone, Copy)]
struct CacheLine([u16; 32]);

pub const DEFAULT_SETTINGS: MeasurementSettings = MeasurementSettings {
    filter_outliers: false,
    samples_per_haystack: 1,
    min_iterations_per_sample: 1,
    max_iterations_per_sample: 5000,
    sampler_type: SamplerType::Random,
    cache_firewall: None,
    yield_before_sample: false,
};

impl Default for MeasurementSettings {
    fn default() -> Self {
        DEFAULT_SETTINGS
    }
}

/// Sampler is responsible for determining the number of iterations to run for each sample
///
/// Different sampler strategies can influence the results heavily. For example, if function is dependent heavily
/// on a memory subsystem, then it should be tested with different number of iterations to be representative
/// for different memory access patterns and cache states.
trait Sampler {
    /// Returns the number of iterations to run for the next sample
    ///
    /// Accepts the number of iteration being run starting from 0.
    fn next_sample_iterations(&mut self, iteration_no: usize) -> usize;
}

/// Runs the same number of iterations for each sample
///
/// Estimates the number of iterations based on the number of iterations achieved in 1 ms and uses
/// this number as a base for the number of iterations for each sample. This is the default sampler which is
/// suitable for most cases.
struct FlatSampler {
    iterations: usize,
}

impl FlatSampler {
    /// Creates a new sampler
    ///
    /// estimate_1ms is the number of iterations to run to estimate the number of iterations to run in 1 ms
    fn new(settings: &MeasurementSettings, estimate: usize) -> Self {
        FlatSampler {
            iterations: estimate.clamp(
                settings.min_iterations_per_sample.max(1),
                settings.max_iterations_per_sample,
            ),
        }
    }
}

impl Sampler for FlatSampler {
    fn next_sample_iterations(&mut self, _iteration_no: usize) -> usize {
        self.iterations
    }
}

struct LinearSampler {
    max_iterations: usize,
}

impl LinearSampler {
    fn new(settings: &MeasurementSettings, estimate: usize) -> Self {
        Self {
            max_iterations: estimate.clamp(
                settings.min_iterations_per_sample.max(1),
                settings.max_iterations_per_sample,
            ),
        }
    }
}

impl Sampler for LinearSampler {
    fn next_sample_iterations(&mut self, iteration_no: usize) -> usize {
        (iteration_no % self.max_iterations) + 1
    }
}

/// Sampler that randomly determines the number of iterations to run for each sample
///
/// This sampler uses a random number generator to decide the number of iterations for each sample.
struct RandomSampler {
    rng: SmallRng,
    max_iterations: usize,
}

impl RandomSampler {
    pub fn new(settings: &MeasurementSettings, estimate: usize, seed: u64) -> Self {
        Self {
            rng: SmallRng::seed_from_u64(seed),
            max_iterations: estimate.clamp(
                settings.min_iterations_per_sample.max(1),
                settings.max_iterations_per_sample,
            ),
        }
    }
}

impl Sampler for RandomSampler {
    fn next_sample_iterations(&mut self, _iteration_no: usize) -> usize {
        self.rng.gen_range(1..=self.max_iterations)
    }
}

/// Calculates the result of the benchmarking run
///
/// Return None if no measurements were made
pub(crate) fn calculate_run_result<N: Into<String>>(
    name: N,
    baseline: &[u64],
    candidate: &[u64],
    iterations_per_sample: &[usize],
    filter_outliers: bool,
) -> Option<RunResult> {
    assert!(baseline.len() == candidate.len());
    assert!(baseline.len() == iterations_per_sample.len());

    let mut iterations_per_sample = iterations_per_sample.to_vec();

    let mut diff = candidate
        .iter()
        .zip(baseline.iter())
        // Calculating difference between candidate and baseline
        .map(|(&c, &b)| (c as f64 - b as f64))
        .zip(iterations_per_sample.iter())
        // Normalizing difference to iterations count
        .map(|(diff, &iters)| diff / iters as f64)
        .collect::<Vec<_>>();

    // need to save number of original samples to calculate number of outliers correctly
    let n = diff.len();

    // Normalizing measurements to iterations count
    let mut baseline = baseline
        .iter()
        .zip(iterations_per_sample.iter())
        .map(|(&v, &iters)| (v as f64) / (iters as f64))
        .collect::<Vec<_>>();
    let mut candidate = candidate
        .iter()
        .zip(iterations_per_sample.iter())
        .map(|(&v, &iters)| (v as f64) / (iters as f64))
        .collect::<Vec<_>>();

    // Calculating measurements range. All measurements outside this interval concidered outliers
    let range = if filter_outliers {
        iqr_variance_thresholds(diff.to_vec())
    } else {
        None
    };

    // Cleaning measurements from outliers if needed
    if let Some(range) = range {
        // We filtering outliers to build statistical Summary and the order of elements in arrays
        // doesn't matter, therefore swap_remove() is used. But we need to make sure that all arrays
        // has the same length
        assert_eq!(diff.len(), baseline.len());
        assert_eq!(diff.len(), candidate.len());

        let mut i = 0;
        while i < diff.len() {
            if range.contains(&diff[i]) {
                i += 1;
            } else {
                diff.swap_remove(i);
                iterations_per_sample.swap_remove(i);
                baseline.swap_remove(i);
                candidate.swap_remove(i);
            }
        }
    };

    let diff_summary = Summary::from(&diff)?;
    let baseline_summary = Summary::from(&baseline)?;
    let candidate_summary = Summary::from(&candidate)?;

    let diff_estimate = DiffEstimate::build(&baseline_summary, &diff_summary);

    Some(RunResult {
        baseline: baseline_summary,
        candidate: candidate_summary,
        diff: diff_summary,
        name: name.into(),
        diff_estimate,
        outliers: n - diff_summary.n,
    })
}

/// Contains the estimation of how much faster or slower is candidate function compared to baseline
pub(crate) struct DiffEstimate {
    // Percentage of difference between candidate and baseline
    //
    // Negative value means that candidate is faster than baseline, positive - slower.
    pct: f64,

    // Is the difference statistically significant
    significant: bool,
}

impl DiffEstimate {
    /// Builds [`DiffEstimate`] from flat sampling
    ///
    /// Flat sampling is a sampling where each measurement is normalized by the number of iterations.
    /// This is needed to make measurements comparable between each other. Linear sampling is more
    /// robust to outliers, but it is requiring more iterations.
    ///
    /// It is assumed that baseline and candidate are already normalized by iterations count.
    fn build(baseline: &Summary<f64>, diff: &Summary<f64>) -> Self {
        let std_dev = diff.variance.sqrt();
        let std_err = std_dev / (diff.n as f64).sqrt();
        let z_score = diff.mean / std_err;

        // significant result is far away from 0 and have more than 0.5% base/candidate difference
        // z_score = 2.6 corresponds to 99% significance level
        let significant = z_score.abs() >= 2.6 && (diff.mean / baseline.mean).abs() > 0.005;
        let pct = diff.mean / baseline.mean * 100.0;

        Self { pct, significant }
    }
}

/// Describes the results of a single benchmark run
pub(crate) struct RunResult {
    /// name of a test
    name: String,

    /// statistical summary of baseline function measurements
    baseline: Summary<f64>,

    /// statistical summary of candidate function measurements
    candidate: Summary<f64>,

    /// individual measurements of a benchmark (candidate - baseline)
    diff: Summary<f64>,

    diff_estimate: DiffEstimate,

    /// Numbers of detected and filtered outliers
    outliers: usize,
}

/// Statistical summary for a given iterator of numbers.
///
/// Calculates all the information using single pass over the data. Mean and variance are calculated using
/// streaming algorithm described in _Art of Computer Programming, Vol 2, page 232_.
#[derive(Clone, Copy)]
pub struct Summary<T> {
    pub n: usize,
    pub min: T,
    pub max: T,
    pub mean: f64,
    pub variance: f64,
}

impl<T: PartialOrd> Summary<T> {
    pub fn from<'a, C>(values: C) -> Option<Self>
    where
        C: IntoIterator<Item = &'a T>,
        T: ToPrimitive + Copy + Default + 'a,
    {
        Self::running(values.into_iter().copied()).last()
    }

    pub fn running<I>(iter: I) -> impl Iterator<Item = Summary<T>>
    where
        T: ToPrimitive + Copy + Default,
        I: Iterator<Item = T>,
    {
        RunningSummary {
            iter,
            n: 0,
            min: T::default(),
            max: T::default(),
            mean: 0.,
            s: 0.,
        }
    }
}

struct RunningSummary<T, I> {
    iter: I,
    n: usize,
    min: T,
    max: T,
    mean: f64,
    s: f64,
}

impl<T, I> Iterator for RunningSummary<T, I>
where
    T: Copy + PartialOrd,
    I: Iterator<Item = T>,
    T: ToPrimitive,
{
    type Item = Summary<T>;

    fn next(&mut self) -> Option<Self::Item> {
        let value = self.iter.next()?;
        let fvalue = value.to_f64().expect("f64 overflow detected");

        if self.n == 0 {
            self.min = value;
            self.max = value;
        }

        if let Some(Ordering::Less) = value.partial_cmp(&self.min) {
            self.min = value;
        }
        if let Some(Ordering::Greater) = value.partial_cmp(&self.max) {
            self.max = value;
        }

        self.n += 1;
        let mean_p = self.mean;
        self.mean += (fvalue - self.mean) / self.n as f64;
        self.s += (fvalue - mean_p) * (fvalue - self.mean);
        let variance = if self.n > 1 {
            self.s / (self.n - 1) as f64
        } else {
            0.
        };

        Some(Summary {
            n: self.n,
            min: self.min,
            max: self.max,
            mean: self.mean,
            variance,
        })
    }
}

/// Outlier detection algorithm based on interquartile range
///
/// Observations that are 1.5 IQR away from the corresponding quartile are consideted as outliers
/// as described in original Tukey's paper.
pub fn iqr_variance_thresholds(mut input: Vec<f64>) -> Option<RangeInclusive<f64>> {
    const MINIMUM_IQR: f64 = 1.;

    input.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap_or(Ordering::Equal));
    let (q1, q3) = (input.len() / 4, input.len() * 3 / 4 - 1);
    if q1 >= q3 || q3 >= input.len() {
        return None;
    }
    // In case q1 and q3 are equal, we need to make sure that IQR is not 0
    // In the future it would be nice to measure system timer precision empirically.
    let iqr = (input[q3] - input[q1]).max(MINIMUM_IQR);

    let low_threshold = input[q1] - iqr * 1.5;
    let high_threshold = input[q3] + iqr * 1.5;

    // Calculating the indicies of the thresholds in an dataset
    let low_threshold_idx =
        match input[0..q1].binary_search_by(|probe| probe.total_cmp(&low_threshold)) {
            Ok(idx) => idx,
            Err(idx) => idx,
        };

    let high_threshold_idx =
        match input[q3..].binary_search_by(|probe| probe.total_cmp(&high_threshold)) {
            Ok(idx) => idx,
            Err(idx) => idx,
        };

    if low_threshold_idx == 0 || high_threshold_idx >= input.len() {
        return None;
    }

    // Calculating the equal number of observations which should be removed from each "side" of observations
    let outliers_cnt = low_threshold_idx.min(input.len() - high_threshold_idx);

    Some(input[outliers_cnt]..=(input[input.len() - outliers_cnt - 1]))
}

mod timer {
    use std::time::Instant;

    #[cfg(all(feature = "hw-timer", target_arch = "x86_64"))]
    pub(super) type ActiveTimer = x86::RdtscpTimer;

    #[cfg(not(feature = "hw-timer"))]
    pub(super) type ActiveTimer = PlatformTimer;

    pub(super) trait Timer<T> {
        fn start() -> T;
        fn stop(start_time: T) -> u64;
    }

    pub(super) struct PlatformTimer;

    impl Timer<Instant> for PlatformTimer {
        #[inline]
        fn start() -> Instant {
            Instant::now()
        }

        #[inline]
        fn stop(start_time: Instant) -> u64 {
            start_time.elapsed().as_nanos() as u64
        }
    }

    #[cfg(all(feature = "hw-timer", target_arch = "x86_64"))]
    pub(super) mod x86 {
        use super::Timer;
        use std::arch::x86_64::{__rdtscp, _mm_mfence};

        pub struct RdtscpTimer;

        impl Timer<u64> for RdtscpTimer {
            #[inline]
            fn start() -> u64 {
                unsafe {
                    _mm_mfence();
                    __rdtscp(&mut 0)
                }
            }

            #[inline]
            fn stop(start: u64) -> u64 {
                unsafe {
                    let end = __rdtscp(&mut 0);
                    _mm_mfence();
                    end - start
                }
            }
        }
    }
}

fn median_execution_time(target: &mut dyn MeasureTarget, iterations: u32) -> u64 {
    assert!(iterations >= 1);
    let measures: Vec<_> = (0..iterations).map(|_| target.measure(1)).collect();
    median(measures).max(1)
}

fn median<T: Copy + Ord + Add<Output = T> + Div<Output = T>>(mut measures: Vec<T>) -> T {
    assert!(!measures.is_empty(), "Vec is empty");
    measures.sort_unstable();
    measures[measures.len() / 2]
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand::{rngs::SmallRng, Rng, RngCore, SeedableRng};
    use std::{iter::Sum, thread, time::Duration};

    #[test]
    fn check_iqr_variance_thresholds() {
        let mut rng = SmallRng::from_entropy();

        // Generate 20 random values in range [-50, 50]
        // and add 10 outliers in each of two ranges [-1000, -200] and [200, 1000]
        // This way IQR is no more than 100 and thresholds should be withing [-50, 50] range
        let mut values = vec![];
        values.extend((0..20).map(|_| rng.gen_range(-50.0..=50.)));
        values.extend((0..10).map(|_| rng.gen_range(-1000.0..=-200.0)));
        values.extend((0..10).map(|_| rng.gen_range(200.0..=1000.0)));

        let thresholds = iqr_variance_thresholds(values).unwrap();

        assert!(
            -50. <= *thresholds.start() && *thresholds.end() <= 50.,
            "Invalid range: {:?}",
            thresholds
        );
    }

    /// This tests checks that the algorithm is stable in case of zero difference between 25 and 75 percentiles
    #[test]
    fn check_outliers_zero_iqr() {
        let mut rng = SmallRng::from_entropy();

        let mut values = vec![];
        values.extend(std::iter::repeat(0.).take(20));
        values.extend((0..10).map(|_| rng.gen_range(-1000.0..=-200.0)));
        values.extend((0..10).map(|_| rng.gen_range(200.0..=1000.0)));

        let thresholds = iqr_variance_thresholds(values).unwrap();

        assert!(
            0. <= *thresholds.start() && *thresholds.end() <= 0.,
            "Invalid range: {:?}",
            thresholds
        );
    }

    #[test]
    fn check_summary_statistics() {
        for i in 2u32..100 {
            let range = 1..=i;
            let values = range.collect::<Vec<_>>();
            let stat = Summary::from(&values).unwrap();

            let sum = (i * (i + 1)) as f64 / 2.;
            let expected_mean = sum as f64 / i as f64;
            let expected_variance = naive_variance(values.as_slice());

            assert_eq!(stat.min, 1);
            assert_eq!(stat.n, i as usize);
            assert_eq!(stat.max, i);
            assert!(
                (stat.mean - expected_mean).abs() < 1e-5,
                "Expected close to: {}, given: {}",
                expected_mean,
                stat.mean
            );
            assert!(
                (stat.variance - expected_variance).abs() < 1e-5,
                "Expected close to: {}, given: {}",
                expected_variance,
                stat.variance
            );
        }
    }

    #[test]
    fn check_summary_statistics_types() {
        Summary::from(<&[i64]>::default());
        Summary::from(<&[u32]>::default());
        Summary::from(&Vec::<i64>::default());
    }

    #[test]
    fn check_naive_variance() {
        assert_eq!(naive_variance(&[1, 2, 3]), 1.0);
        assert_eq!(naive_variance(&[1, 2, 3, 4, 5]), 2.5);
    }

    #[test]
    fn check_running_variance() {
        let input = [1i64, 2, 3, 4, 5, 6, 7];
        let variances = Summary::running(input.into_iter())
            .map(|s| s.variance)
            .collect::<Vec<_>>();
        let expected = &[0., 0.5, 1., 1.6666, 2.5, 3.5, 4.6666];

        assert_eq!(variances.len(), expected.len());

        for (value, expected_value) in variances.iter().zip(expected) {
            assert!(
                (value - expected_value).abs() < 1e-3,
                "Expected close to: {}, given: {}",
                expected_value,
                value
            );
        }
    }

    #[test]
    fn check_running_variance_stress_test() {
        let rng = RngIterator(SmallRng::seed_from_u64(0)).map(|i| i as i64);
        let mut variances = Summary::running(rng).map(|s| s.variance);

        assert!(variances.nth(1_000_000).unwrap() > 0.)
    }

    /// Basic check of measurement code
    ///
    /// This test is quite brittle. There is no guarantee the OS scheduler will wake up the thread
    /// soon enough to meet measurement target. We try to mitigate this possibility using several strategies:
    /// 1. repeating test several times and taking median as target measurement.
    /// 2. using more liberal checking condition (allowing 1 order of magnitude error in measurement)
    #[test]
    fn check_measure_time() {
        let expected_delay = 1;
        let mut target = benchmark_fn("foo", move || {
            thread::sleep(Duration::from_millis(expected_delay))
        });

        let median = median_execution_time(target.as_mut(), 10) / NS_TO_MS as u64;
        assert!(median < expected_delay * 10);
    }

    struct RngIterator<T>(T);

    impl<T: RngCore> Iterator for RngIterator<T> {
        type Item = u32;

        fn next(&mut self) -> Option<Self::Item> {
            Some(self.0.next_u32())
        }
    }

    fn naive_variance<T>(values: &[T]) -> f64
    where
        T: Sum + Copy,
        f64: From<T>,
    {
        let n = values.len() as f64;
        let mean = f64::from(values.iter().copied().sum::<T>()) / n;
        let mut sum_of_squares = 0.;
        for value in values.into_iter().copied() {
            sum_of_squares += (f64::from(value) - mean).powi(2);
        }
        sum_of_squares / (n - 1.)
    }
}