1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
//#![doc = include_str!("../README.md")]
//#![cfg_attr(not(any(feature = "stdlib", test)), no_std)]
#![feature(ptr_sub_ptr)]
#![feature(pointer_is_aligned)]
#![feature(offset_of)]
#![feature(alloc_layout_extra)]
#![feature(slice_ptr_get)]
#![feature(core_intrinsics)]
#![feature(const_mut_refs)]
#![feature(slice_ptr_len)]
#![feature(const_slice_from_raw_parts_mut)]
#![cfg_attr(feature = "allocator", feature(allocator_api))]
#![feature(maybe_uninit_uninit_array)]
#[cfg(feature = "spin")]
mod tallock;
mod llist;
mod span;
mod tag;
#[cfg(feature = "spin")]
pub use tallock::Tallock;
#[cfg(all(feature = "spin", feature = "allocator"))]
pub use tallock::TallockRef;
pub use span::Span;
use llist::LlistNode;
use tag::Tag;
use core::{
ptr::NonNull,
alloc::Layout,
};
// desciptive error for failures
// borrow allocator_api's if available, else define our own
#[cfg(feature = "allocator")]
pub use core::alloc::AllocError;
#[cfg(not(feature = "allocator"))]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct AllocError;
#[cfg(not(feature = "allocator"))]
impl core::fmt::Display for AllocError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str("memory allocation failed")
}
}
// Free chunk (3x ptr size minimum):
// ?? | NODE: LlistNode (2 * ptr) SIZE: usize, ..???.., SIZE: usize | ??
// Reserved chunk (1x ptr size of overhead):
// ?? | TAG: Tag (usize), ??????? | ??
// TAG contains a pointer to the top of the reserved chunk,
// a is_allocated (set) bit flag differentiating itself from a NODE pointer
// (which is aligned and thus does not have that bit set),
// as well as a is_low_free bit flag which does what is says on the tin
// go check out g_of_size to see how bucketing works
const WORD_SIZE: usize = core::mem::size_of::<usize>();
const ALIGN: usize = core::mem::align_of::<usize>();
const NODE_SIZE: usize = core::mem::size_of::<LlistNode>();
const TAG_SIZE: usize = core::mem::size_of::<Tag>();
/// Minimum chunk size.
const MIN_CHUNK_SIZE: usize = NODE_SIZE + WORD_SIZE;
const BIN_COUNT: usize = usize::BITS as usize * 2;
/// `size` should be larger or equal to MIN_CHUNK_SIZE
#[inline]
unsafe fn g_of_size(size: usize) -> u8 {
// this mess determine the bucketing strategy used by the allocator
// the default is to have a bucket per multiple of word size from the minimum
// chunk size up to WORD_BUCKETED_SIZE and double word gap (sharing two sizes)
// up to DOUBLE_BUCKETED_SIZE, and from there on use pseudo-logarithmic sizes.
// the index is referred to as 'g' for 'historical reasons'
// such sizes are as follows: begin at some power of two (DOUBLE_BUCKETED_SIZE)
// and increase by some power of two fraction (quarters, on 64 bit machines)
// until reaching the next power of two, and repeat:
// e.g. begin at 32, increase by quarters: 32, 40, 48, 56, 64, 80, 96, 112, 128, ...
// going from a size to a bucket or a bucket to a size here is only a handful
// of instructions, but it looks a bit magic.
// to get g of size, take the base two logarithm and subtract the number of bits
// taken up by the fractional contribution to get the slide factor. slide the size
// and clear the top bit to get the fractional index. add the fractional index
// to the (size log2 minus the offset multiplied by the number of fractions).
// this algorithm is reversible too, but this is not used as of yet.
// note to anyone adding support for another word size: use buckets.py to figure it out
const ERRMSG: &str = "Unsupported system word size, open an issue/create a PR!";
const WORD_BIN_LIMIT: usize = match WORD_SIZE { 8 => 256, 4 => 64, _ => panic!("{}", ERRMSG) };
const DOUBLE_BIN_LIMIT: usize = match WORD_SIZE { 8 => 512, 4 => 128, _ => panic!("{}", ERRMSG) };
/// Log 2 of the number of divisions per power of 2.
const G_P2DV: usize = match WORD_SIZE { 8 => 4u8, 4 => 2, _ => panic!("{}", ERRMSG) }.ilog2() as usize;
const DBL_BUCKET_G: u8 = ((WORD_BIN_LIMIT - MIN_CHUNK_SIZE) / WORD_SIZE) as u8;
const EXP_BUCKET_G: usize = DBL_BUCKET_G as usize + ((DOUBLE_BIN_LIMIT - WORD_BIN_LIMIT) / WORD_SIZE / 2);
/// Log 2 of inimum chunk size.
const G_OFST: usize = DOUBLE_BIN_LIMIT.ilog2() as usize;
debug_assert!(size >= MIN_CHUNK_SIZE);
if size < WORD_BIN_LIMIT {
((size - MIN_CHUNK_SIZE) / WORD_SIZE) as u8
} else if size < DOUBLE_BIN_LIMIT {
(size / (2 * WORD_SIZE)) as u8 - (WORD_BIN_LIMIT / (2 * WORD_SIZE)) as u8 + DBL_BUCKET_G
// equiv to (size - WORD_BIN_LIMIT) / 2WORD_SIZE + DBL_BUCKET_G
} else {
let size_log2 = size.ilog2() as usize;
let g = ((size >> size_log2 - G_P2DV) ^ (1 << G_P2DV)) + ((size_log2 - G_OFST) << G_P2DV);
(g + EXP_BUCKET_G).min(BIN_COUNT - 1) as u8
}
}
fn low_aligned_fit(ptr: *mut u8, align_mask: usize) -> *mut u8 {
((ptr as usize + align_mask) & !align_mask) as *mut u8
}
fn align_down(ptr: *mut u8) -> *mut u8 {
(ptr as usize & !(ALIGN - 1)) as *mut u8
}
fn align_up(ptr: *mut u8) -> *mut u8 {
(ptr as usize + (ALIGN - 1) & !(ALIGN - 1)) as *mut u8
}
/// Returns whether the two pointers are greater than `MIN_CHUNK_SIZE` apart.
fn ge_min_size_apart(ptr: *mut u8, acme: *mut u8) -> bool {
debug_assert!(acme >= ptr, "!(acme {:p} > ptr {:p})", acme, ptr);
acme as isize - ptr as isize >= MIN_CHUNK_SIZE as isize
}
/// Determines the chunk pointer and retrieves the tag, given the allocated pointer.
#[inline]
unsafe fn chunk_ptr_from_alloc_ptr(ptr: *mut u8) -> (*mut u8, Tag) {
#[derive(Clone, Copy)]
union PreAllocationData {
tag: Tag,
ptr: *mut Tag,
}
let mut low_ptr = ((ptr as usize - TAG_SIZE) & !(ALIGN - 1)) as *mut u8;
let data = *low_ptr.cast::<PreAllocationData>();
// if the chunk_ptr doesn't point to an allocated tag
// it points to a pointer to the actual tag
let tag = if !data.tag.is_allocated() {
low_ptr = data.ptr.cast();
*data.ptr
} else {
data.tag
};
(low_ptr, tag)
}
/// Pointer wrapper to a free chunk. Provides convenience methods
/// for getting the LlistNode pointer and lower pointer to its size.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
#[repr(transparent)]
struct FreeChunk(*mut u8);
impl FreeChunk {
const NODE_OFFSET: usize = 0;
const SIZE_OFFSET: usize = NODE_SIZE;
fn ptr(self) -> *mut u8 {
self.0
}
fn node_ptr(self) -> *mut LlistNode {
unsafe { self.0.add(Self::NODE_OFFSET).cast() }
}
fn size_ptr(self) -> *mut usize {
unsafe { self.0.add(Self::SIZE_OFFSET).cast() }
}
}
/// An abstraction over the unknown state of the chunk above.
enum HighChunk {
Free(FreeChunk),
Full(*mut Tag),
}
impl HighChunk {
#[inline]
unsafe fn from_ptr(ptr: *mut u8) -> Self {
if *ptr.cast::<usize>() & Tag::ALLOCATED_FLAG != 0 {
Self::Full(ptr.cast())
} else {
Self::Free(FreeChunk(ptr))
}
}
}
type OomHandler = fn(&mut Talloc, Layout) -> Result<(), AllocError>;
pub fn alloc_error(_: &mut Talloc, _: Layout) -> Result<(), AllocError> {
Err(AllocError)
}
/// The TauOS Allocator!
///
/// Note, you're probably looking for `Tallock` if you want
/// the spin-locked wrapper with the `GlobalAlloc` and `Allocator`
/// trait implementations.
///
/// TODO resolve
pub struct Talloc {
oom_handler: OomHandler,
arena: Span,
alloc_base: *mut u8,
alloc_acme: *mut u8,
is_top_free: bool,
/// The low bits of the availability flags.
availability_low: usize,
/// The high bits of the availability flags.
availability_high: usize,
/// Linked list buckets.
/// # SAFETY:
/// This field is not referenced and modified with respect to Rust's aliasing rules.
/// This can result in undefined behaviour (resulting in real bugs, trust me).
///
/// Therefore, do not read directly, instead use `read_llist` and `get_llist_ptr`.
llists: [Option<NonNull<LlistNode>>; BIN_COUNT],
}
unsafe impl Send for Talloc {}
impl core::fmt::Debug for Talloc {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("TallocCore")
.field("arena", &self.arena)
.field("alloc_base", &self.alloc_base)
.field("alloc_acme", &self.alloc_acme)
.field("is_top_free", &self.is_top_free)
.field("availability_low", &format_args!("{:x}", self.availability_low))
.field("availability_high", &format_args!("{:x}", self.availability_high))
.finish()
}
}
impl Talloc {
/// # Safety:
/// - Do not dereference the pointer. Use `read_llist` instead.
/// - `g` must be lower than `BUCKET_COUNT`
unsafe fn get_llist_ptr(&mut self, g: u8) -> *mut Option<NonNull<LlistNode>> {
debug_assert!(g < BIN_COUNT as u8);
self.llists.as_mut_ptr().add(g as usize)
}
/// Safely read from `llists`.
/// # Safety:
/// `g` must be lower than `BUCKET_COUNT`
unsafe fn read_llist(&mut self, g: u8) -> Option<NonNull<LlistNode>> {
// read volatile gets around the issue with violating Rust's aliasing rules
// by preventing the compiler from eliding or messing with reads to the
// linked list pointers. For example, Rust will not realize that removing
// a node in the linked list might modify the llists while we hold an
// &mut to the struct, and you get weird behaviour due to optimizations.
// see llists's docs on safety for some more info.
self.get_llist_ptr(g).read_volatile()
}
const fn required_chunk_size(size: usize) -> usize {
if size <= MIN_CHUNK_SIZE - TAG_SIZE {
MIN_CHUNK_SIZE
} else {
size + TAG_SIZE + (ALIGN - 1) & !(ALIGN - 1)
}
}
#[inline]
fn set_avails(&mut self, g: u8) {
debug_assert!(g < 128);
if g < 64 {
debug_assert!(self.availability_low & 1 << g == 0);
self.availability_low ^= 1 << g;
} else {
debug_assert!(self.availability_high & 1 << g - 64 == 0);
self.availability_high ^= 1 << g - 64;
}
}
#[inline]
fn clear_avails(&mut self, g: u8) {
debug_assert!(g < 128);
// if head is the last node
if g < 64 {
self.availability_low ^= 1 << g;
debug_assert!(self.availability_low & 1 << g == 0);
} else {
self.availability_high ^= 1 << g - 64;
debug_assert!(self.availability_high & 1 << g - 64 == 0);
}
}
#[inline]
unsafe fn add_chunk_to_record(&mut self, base: *mut u8, acme: *mut u8) {
debug_assert!(ge_min_size_apart(base, acme));
let size = acme.sub_ptr(base);
let g = g_of_size(size);
let free_chunk = FreeChunk(base);
if self.read_llist(g).is_none() {
self.set_avails(g);
}
LlistNode::insert(
free_chunk.node_ptr(),
self.get_llist_ptr(g),
self.read_llist(g)
);
debug_assert!(self.read_llist(g).is_some());
// write in low size tag above the node pointers
*free_chunk.size_ptr() = size;
// write in high size tag at the end of the free chunk
*acme.cast::<usize>().sub(1) = size;
}
#[inline]
unsafe fn remove_chunk_from_record(&mut self, node_ptr: *mut LlistNode, g: u8) {
debug_assert!(self.read_llist(g).is_some());
LlistNode::remove(node_ptr);
if self.read_llist(g).is_none() {
self.clear_avails(g);
}
}
/// Allocate a contiguous region of memory according to `layout`, if possible.
/// # SAFETY:
/// `layout.size()` must be nonzero.
pub unsafe fn malloc(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocError> {
debug_assert!(layout.size() != 0);
// no checks for initialization are performed, as it would be overhead.
// this will return None here as the availability flags are initialized
// to zero; all clear; no memory to allocate, call the OOM handler.
let (free_chunk_ptr, free_chunk_acme, alloc_ptr) = loop {
match self.get_sufficient_chunk(layout) {
Some(payload) => break payload,
None => (self.oom_handler)(self, layout)?,
}
};
let pre_alloc_ptr = align_down(alloc_ptr.sub(TAG_SIZE));
let mut tag_ptr = free_chunk_acme.sub(MIN_CHUNK_SIZE).min(pre_alloc_ptr);
let mut is_low_free = false;
if ge_min_size_apart(free_chunk_ptr, tag_ptr) {
// add free block below the allocation
self.add_chunk_to_record(free_chunk_ptr, tag_ptr);
is_low_free = true;
} else {
tag_ptr = free_chunk_ptr;
}
if tag_ptr != pre_alloc_ptr {
// write the real tag ptr where the tag is expected to be
*pre_alloc_ptr.cast::<*mut u8>() = tag_ptr;
}
// choose the highest between...
let req_acme = core::cmp::max(
// the required chunk acme due to the allocation
align_up(alloc_ptr.add(layout.size())),
// the required chunk acme due to the minimum chunk size
tag_ptr.add(MIN_CHUNK_SIZE)
);
if ge_min_size_apart(req_acme, free_chunk_acme) {
// add free block above the allocation
self.add_chunk_to_record(req_acme, free_chunk_acme);
*tag_ptr.cast() = Tag::new(req_acme, is_low_free);
} else {
if free_chunk_acme != self.alloc_acme {
Tag::clear_low_free(free_chunk_acme.cast());
} else {
debug_assert!(self.is_top_free);
self.is_top_free = false;
}
*tag_ptr.cast() = Tag::new(free_chunk_acme, is_low_free);
}
self.scan_for_errors();
Ok(NonNull::new_unchecked(alloc_ptr))
}
/// Returns `(chunk_ptr, chunk_size, alloc_ptr)`
unsafe fn get_sufficient_chunk(&mut self, layout: Layout) -> Option<(*mut u8, *mut u8, *mut u8)> {
let req_chunk_size = Self::required_chunk_size(layout.size());
let mut g = g_of_size(req_chunk_size) as i8 - 1;
if layout.align() <= ALIGN {
// the required alignment is most often the machine word size (or less)
// a faster loop without alignment checking is used in this case
loop {
g = self.g_of_larger_nonempty_bucket(g)?;
for node_ptr in LlistNode::iter_mut(self.read_llist(g as u8)) {
let free_chunk = FreeChunk(node_ptr.as_ptr().cast());
let chunk_size = *free_chunk.size_ptr();
// if the chunk size is sufficient, remove from bookkeeping data structures and return
if chunk_size >= req_chunk_size {
self.remove_chunk_from_record(free_chunk.node_ptr(), g as u8);
return Some((
free_chunk.ptr(),
free_chunk.ptr().add(chunk_size),
free_chunk.ptr().add(TAG_SIZE)
));
}
}
}
} else {
// a larger than word-size alignement is demanded
// therefore each chunk is manually checked to be sufficient accordingly
let align_mask = layout.align() - 1;
loop {
g = self.g_of_larger_nonempty_bucket(g)?;
for node_ptr in LlistNode::iter_mut(self.read_llist(g as u8)) {
let free_chunk = FreeChunk(node_ptr.as_ptr().cast());
let chunk_size = *free_chunk.size_ptr();
if chunk_size >= req_chunk_size {
// calculate the lowest aligned pointer above the tag-offset free chunk pointer
let aligned_ptr: _ = low_aligned_fit(free_chunk.ptr().add(TAG_SIZE), align_mask);
let chunk_acme = free_chunk.ptr().add(chunk_size);
// if the remaining size is sufficient, remove the chunk from the books and return
if aligned_ptr.add(layout.size()) <= chunk_acme {
self.remove_chunk_from_record(free_chunk.node_ptr(), g as u8);
return Some((free_chunk.ptr(), chunk_acme, aligned_ptr));
}
}
}
}
}
}
#[inline(always)]
fn g_of_larger_nonempty_bucket(&self, mut g: i8) -> Option<i8> {
// if g == 63, the next up are the high flags,
// so only worry about the low flags for g < 63
if g < 63 {
// shift flags such that only flags for larger buckets are kept
let shifted_avails = self.availability_low >> g + 1;
// find the next up, grab from the high flags, or quit
if shifted_avails != 0 {
g += 1 + shifted_avails.trailing_zeros() as i8;
} else if self.availability_high != 0 {
g = self.availability_high.trailing_zeros() as i8 + 64;
} else {
return None;
}
} else {
// similar process to the above, but the low flags are irrelevant
let shifted_avails = self.availability_high >> g - 63;
if shifted_avails != 0 {
g += 1 + shifted_avails.trailing_zeros() as i8;
} else {
return None;
}
}
Some(g)
}
/// Free previously allocated/reallocated memory.
/// # SAFETY:
/// `ptr` must have been previously allocated given `layout`.
pub unsafe fn free(&mut self, ptr: NonNull<u8>, _: Layout) {
let (mut chunk_ptr, tag) = chunk_ptr_from_alloc_ptr(ptr.as_ptr());
let mut chunk_acme = tag.acme_ptr();
debug_assert!(tag.is_allocated());
debug_assert!(ge_min_size_apart(chunk_ptr, chunk_acme));
if chunk_acme != self.alloc_acme {
// a higher check exists, handle the freee and non-free cases
match HighChunk::from_ptr(chunk_acme) {
// if taken, just set the flag for the low chunk
HighChunk::Full(tag_ptr) => Tag::set_low_free(tag_ptr),
// if free, recombine the freed chunk and the high free chunk
HighChunk::Free(high_chunk) => {
// get the size, remove the high free chunk from the books, widen the deallotation
let high_chunk_size = *high_chunk.size_ptr();
self.remove_chunk_from_record(high_chunk.node_ptr(), g_of_size(high_chunk_size));
chunk_acme = chunk_acme.add(high_chunk_size);
},
}
} else {
debug_assert!(!self.is_top_free);
self.is_top_free = true;
}
if tag.is_low_free() {
// low tag is free; recombine
// grab the size off the top of the block first, then remove at the base
let low_chunk_size = *chunk_ptr.cast::<usize>().sub(1);
chunk_ptr = chunk_ptr.sub(low_chunk_size);
self.remove_chunk_from_record(
FreeChunk(chunk_ptr).node_ptr(),
g_of_size(low_chunk_size)
);
}
// add the full recombined free chunk back into the books
self.add_chunk_to_record(chunk_ptr, chunk_acme);
self.scan_for_errors();
}
/// Grow a previously allocated/reallocated region of memory to `new_size`.
/// # SAFETY:
/// `ptr` must have been previously allocated or reallocated given `old_layout`.
/// `new_size` must be larger or equal to `old_layout.size()`.
pub unsafe fn grow(
&mut self,
ptr: NonNull<u8>,
layout: Layout,
new_size: usize
) -> Result<NonNull<u8>, AllocError> {
debug_assert!(new_size >= layout.size());
let (chunk_ptr, tag) = chunk_ptr_from_alloc_ptr(ptr.as_ptr());
let chunk_acme = tag.acme_ptr();
debug_assert!(tag.is_allocated());
debug_assert!(ge_min_size_apart(chunk_ptr, chunk_acme));
// choose the highest between...
let new_req_acme = core::cmp::max(
// the required chunk acme due to the allocation
align_up(ptr.as_ptr().add(new_size)),
// the required chunk acme due to the minimum chunk size
chunk_ptr.add(MIN_CHUNK_SIZE)
);
// short-circuit if the chunk is already large enough
if new_req_acme <= chunk_acme {
return Ok(ptr);
}
// otherwise, check if the chunk above 1) exists 2) is free 3) is large enough
// because free chunks don't border free chunks, this needn't be recursive
if chunk_acme != self.alloc_acme {
// given there is a chunk above, is it free?
if !(*chunk_acme.cast::<Tag>()).is_allocated() {
let free_chunk = FreeChunk(chunk_acme);
let high_chunk_size = *free_chunk.size_ptr();
let high_chunk_acme = chunk_acme.add(high_chunk_size);
// is the additional memeory sufficient?
if high_chunk_acme >= new_req_acme {
self.remove_chunk_from_record(free_chunk.node_ptr(), g_of_size(high_chunk_size));
// finally, determine if the remainder of the free block is big enough
// to be freed again, or if the entire region should be allocated
if ge_min_size_apart(new_req_acme, high_chunk_acme) {
self.add_chunk_to_record(new_req_acme, high_chunk_acme);
Tag::set_acme(chunk_ptr.cast(), new_req_acme);
} else {
if high_chunk_acme != self.alloc_acme {
Tag::clear_low_free(high_chunk_acme.cast());
} else {
debug_assert!(self.is_top_free);
self.is_top_free = false;
}
Tag::set_acme(chunk_ptr.cast(), high_chunk_acme);
}
self.scan_for_errors();
return Ok(ptr)
}
}
}
// grow in-place failed; reallocate the slow way
self.scan_for_errors();
let allocation = self.malloc(Layout::from_size_align_unchecked(new_size, layout.align()))?;
allocation.as_ptr().copy_from_nonoverlapping(ptr.as_ptr(), layout.size());
self.free(ptr, layout);
self.scan_for_errors();
Ok(allocation)
}
/// Shrink a previously allocated/reallocated region of memory to `new_size`.
///
/// This function is infallibe given valid inputs, and the reallocation will always be
/// done in-place, maintaining the validity of the pointer.
///
/// # SAFETY:
/// - `ptr` must have been previously allocated or reallocated given `old_layout`.
/// - `new_size` must be smaller or equal to `old_layout.size()`.
/// - `new_size` should be nonzero.
pub unsafe fn shrink(&mut self, ptr: NonNull<u8>, layout: Layout, new_size: usize) {
debug_assert!(new_size != 0);
debug_assert!(new_size <= layout.size());
let (chunk_ptr, tag) = chunk_ptr_from_alloc_ptr(ptr.as_ptr());
let mut chunk_acme = tag.acme_ptr();
debug_assert!(tag.is_allocated());
debug_assert!(ge_min_size_apart(chunk_ptr, chunk_acme));
// choose the highest between...
let new_req_acme = core::cmp::max(
// the required chunk acme due to the allocation
align_up(ptr.as_ptr().add(layout.size())),
// the required chunk acme due to the minimum chunk size
chunk_ptr.add(MIN_CHUNK_SIZE)
);
// if the remainder between the new required size and the originally allocated
// size is large enough, free the remainder, otherwise leave it
if ge_min_size_apart(new_req_acme, chunk_acme) {
// check if there's a chunk above, whether its taken or not, and
// modify the taken is_low_free flag/recombine the free block
if chunk_acme != self.alloc_acme {
match HighChunk::from_ptr(chunk_acme) {
HighChunk::Full(tag_ptr) => Tag::set_low_free(tag_ptr),
HighChunk::Free(free_chunk) => {
let free_chunk_size = *free_chunk.size_ptr();
chunk_acme = free_chunk.ptr().add(free_chunk_size);
self.remove_chunk_from_record(free_chunk.node_ptr(), g_of_size(free_chunk_size));
},
}
} else {
debug_assert!(!self.is_top_free);
self.is_top_free = true;
}
self.add_chunk_to_record(new_req_acme, chunk_acme);
Tag::set_acme(chunk_ptr.cast(), new_req_acme);
}
self.scan_for_errors();
}
pub const fn new() -> Self {
Self {
oom_handler: alloc_error,
arena: Span::Empty,
alloc_base: core::ptr::null_mut(),
alloc_acme: core::ptr::null_mut(),
is_top_free: true,
availability_low: 0,
availability_high: 0,
llists: [None; BIN_COUNT],
}
}
pub const fn with_oom_handler(oom_handler: OomHandler) -> Self {
Self {
oom_handler,
arena: Span::Empty,
alloc_base: core::ptr::null_mut(),
alloc_acme: core::ptr::null_mut(),
is_top_free: true,
availability_low: 0,
availability_high: 0,
llists: [None; BIN_COUNT],
}
}
pub const fn get_arena(&self) -> Span {
self.arena
}
/// Returns the span in which allocations may be placed.
pub fn get_allocatable_span(&self) -> Span {
Span::new(self.alloc_base as isize, self.alloc_acme as isize)
}
/// Returns the minimum span containing all allocated memory.
///
/// `None` indicated there is no allocated memory.
pub fn get_allocated_span(&self) -> Span {
// check if the arena is nonexistant
if unsafe { self.alloc_acme.sub_ptr(self.alloc_base) } < MIN_CHUNK_SIZE {
return Span::Empty;
}
let mut allocated_acme = self.alloc_acme as isize;
let mut allocated_base = self.alloc_base as isize;
// check for free space at the arena's top
if self.is_top_free {
let top_free_size = unsafe {
*self.alloc_acme.cast::<usize>().sub(1)
};
allocated_acme -= top_free_size as isize;
}
// check for free memory at the bottom of the arena
if !(unsafe { *self.alloc_base.cast::<Tag>() }).is_allocated() {
let free_bottom_chunk = FreeChunk(self.alloc_base);
let free_bottom_size = unsafe { *free_bottom_chunk.size_ptr() };
allocated_base += free_bottom_size as isize;
}
// allocated_base might be greater or equal to allocated_acme
// but that's fine, this'll just become a Span::Empty
Span::new(allocated_base, allocated_acme)
}
/// Initialize the allocator heap.
/// # SAFETY:
/// - After initialization, the allocator structure is invalidated if moved.
/// This is because there are pointers on the heap to this struct.
/// - Initialization restores validity, but erases all knowledge of previous allocations.
///
/// Alternatively, use the `mov` method.
pub unsafe fn init(&mut self, arena: Span) {
assert!(!arena.contains(0), "Arena covers the null address!");
self.arena = arena;
self.llists = [None; BIN_COUNT];
self.availability_low = 0;
self.availability_high = 0;
match arena.word_align_inward() {
Span::Sized { base, acme } if acme - base >= MIN_CHUNK_SIZE as isize => {
self.alloc_base = base as *mut u8;
self.alloc_acme = acme as *mut u8;
self.add_chunk_to_record(self.alloc_base, self.alloc_acme);
self.is_top_free = true;
},
_ => {
self.alloc_acme = core::ptr::null_mut();
self.alloc_base = core::ptr::null_mut();
self.is_top_free = false;
}
}
self.scan_for_errors();
}
/// Increase the extent of the arena.
///
/// # SAFETY:
/// The entire new_arena memory but be readable and writable
/// and unmutated besides that which is allocated. So on and so forth.
///
/// # Panics:
/// This function panics if:
/// - `new_arena` doesn't contain the old arena
/// - `new_arena` contains the null address
///
/// A recommended pattern for satisfying these criteria is:
/// ```rust
/// # use talloc::{Span, Talloc};
/// # let mut tallock = Talloc::new().spin_lock();
/// let mut talloc = tallock.0.lock();
/// // compute the new arena as an extention of the old arena
/// let new_arena = talloc.get_arena().extend(1234, 5678).above(0x1000);
/// // extend the arena
/// // SAFETY: must be sure that we aren't extending into memory we can't use
/// unsafe { talloc.extend(new_arena); }
/// ```
pub unsafe fn extend(&mut self, new_arena: Span) {
assert!(new_arena.contains_span(self.arena), "new_span must contain the current arena");
assert!(!new_arena.contains(0), "Arena covers the null address!");
if self.alloc_acme.sub_ptr(self.alloc_base) < MIN_CHUNK_SIZE {
// there's no free or allocated memory, so just init instead
self.init(new_arena);
return;
}
self.arena = new_arena;
let old_alloc_base = self.alloc_base;
let old_alloc_acme = self.alloc_acme;
match new_arena.word_align_inward() {
// we confirmed the new_arena is bigger than the old arena
// and that the old allocatable range is bigger than min chunk size
// thus the aligned result should be big enough
Span::Empty => unreachable!(),
Span::Sized { base, acme } => {
debug_assert!(acme - base >= MIN_CHUNK_SIZE as isize);
self.alloc_base = base as *mut u8;
self.alloc_acme = acme as *mut u8;
},
}
// if the top chunk is free, extend the block to cover the new extra area
// otherwise allocate above if possible
if self.is_top_free {
let top_size = *old_alloc_acme.cast::<usize>().sub(1);
let top_chunk = FreeChunk(old_alloc_acme.sub(top_size));
self.remove_chunk_from_record(top_chunk.node_ptr(), g_of_size(top_size));
self.add_chunk_to_record(top_chunk.ptr(), self.alloc_acme);
} else if self.alloc_acme.sub_ptr(old_alloc_acme) > MIN_CHUNK_SIZE {
self.add_chunk_to_record(old_alloc_acme, self.alloc_acme);
self.is_top_free = true;
} else {
self.alloc_acme = old_alloc_acme;
}
// if the lowest chunk is allocated, add free chunk below if possible
// else extend the free chuk that's there
if !(*old_alloc_base.cast::<Tag>()).is_allocated() {
let bottom_chunk = FreeChunk(old_alloc_base);
let bottom_size = *bottom_chunk.size_ptr();
self.remove_chunk_from_record(bottom_chunk.node_ptr(), g_of_size(bottom_size));
self.add_chunk_to_record(self.alloc_base, bottom_chunk.ptr().add(bottom_size));
} else if old_alloc_base.sub_ptr(self.alloc_base) > MIN_CHUNK_SIZE {
self.add_chunk_to_record(self.alloc_base, old_alloc_base);
Tag::set_low_free(old_alloc_base.cast());
} else {
self.alloc_base = old_alloc_base;
}
self.scan_for_errors();
}
/// Reduce the extent of the arena.
/// The new extent must encompass all current allocations. See below.
///
/// # Panics:
/// This function panics if:
/// - old arena doesn't contain `new_arena`
/// - `new_arena` doesn't contain all the allocated memory
///
/// The recommended pattern for satisfying these criteria is:
/// ```rust
/// # use talloc::{Span, Talloc};
/// # let mut tallock = Talloc::new().spin_lock();
/// // lock the allocator otherwise a race condition may occur
/// // in between get_allocated_span and truncate
/// let mut talloc = tallock.0.lock();
/// // compute the new arena as a reduction of the old arena
/// let new_arena = talloc.get_arena().truncate(1234, 5678).fit_over(talloc.get_allocated_span());
/// // alternatively...
/// let new_arena = Span::from(1234..5678).fit_within(talloc.get_arena()).fit_over(talloc.get_allocated_span());
/// // truncate the arena
/// talloc.truncate(new_arena);
/// ```
pub fn truncate(&mut self, new_arena: Span) {
let new_alloc_span = new_arena.word_align_inward();
// check that the new_arena is correct
assert!(self.arena.contains_span(new_arena),
"the old arena must contain new_arena!");
assert!(new_alloc_span.contains_span(self.get_allocated_span()),
"the new_arena must contain the allocated span!");
// if the old allocatable arena is too small to contain anything, just reinit
if (self.alloc_acme as isize - self.alloc_base as isize) < MIN_CHUNK_SIZE as isize {
unsafe { self.init(new_arena); }
return;
}
let new_alloc_base;
let new_alloc_acme;
// if it's decimating the entire arena, just reinit, else get the new allocatable extents
match new_alloc_span {
Span::Sized { base, acme } if acme - base >= MIN_CHUNK_SIZE as isize => {
self.arena = new_arena;
new_alloc_base = base as *mut u8;
new_alloc_acme = acme as *mut u8;
},
_ => {
unsafe { self.init(new_arena); }
return;
}
}
// otherwise, trim down the arena
// trim the top
if new_alloc_acme < self.alloc_acme {
debug_assert!(self.is_top_free);
let top_free_size = unsafe {
*self.alloc_acme.cast::<usize>().sub(1)
};
let top_free_chunk = FreeChunk(
self.alloc_acme.wrapping_sub(top_free_size)
);
unsafe {
self.remove_chunk_from_record(top_free_chunk.node_ptr(), g_of_size(top_free_size));
}
if ge_min_size_apart(top_free_chunk.ptr(), new_alloc_acme) {
self.alloc_acme = new_alloc_acme;
unsafe {
self.add_chunk_to_record(top_free_chunk.ptr(), new_alloc_acme);
}
} else {
self.alloc_acme = top_free_chunk.ptr();
self.is_top_free = false;
}
}
// no need to check if the entire arena vanished;
// we checked against this possiblity earlier
// i.e. that new_alloc_span is insignificantly sized
// check for free memory at the bottom of the arena
if new_alloc_base > self.alloc_base {
let base_free_chunk = FreeChunk(self.alloc_base);
let base_free_size = unsafe { *base_free_chunk.size_ptr() };
let base_free_chunk_acme = base_free_chunk.ptr().wrapping_add(base_free_size);
unsafe {
self.remove_chunk_from_record(base_free_chunk.node_ptr(), g_of_size(base_free_size));
}
if ge_min_size_apart(new_alloc_base, base_free_chunk_acme) {
self.alloc_base = new_alloc_base;
unsafe {
self.add_chunk_to_record(new_alloc_base, base_free_chunk_acme);
}
} else {
self.alloc_base = base_free_chunk_acme;
unsafe {
debug_assert!(base_free_chunk_acme != self.alloc_acme);
Tag::clear_low_free(base_free_chunk_acme.cast());
}
}
}
self.scan_for_errors();
}
/// Move the allocator structure to a new destination safely.
pub fn mov(self, dest: &mut core::mem::MaybeUninit<Self>) -> &mut Self {
let ref_mut = dest.write(self);
for g in 0..ref_mut.llists.len() {
if let Some(ptr) = unsafe { ref_mut.read_llist(g as u8) } {
unsafe {
(*ptr.as_ptr()).next_of_prev = ref_mut.get_llist_ptr(g as u8);
}
}
}
ref_mut
}
/// Wrap in a spin mutex-locked wrapper struct.
///
/// This implements the `GlobalAlloc` trait and provides
/// access to the `Allocator` API.
#[cfg(feature = "spin")]
pub const fn spin_lock(self) -> Tallock {
Tallock(spin::Mutex::new(self))
}
/// Debugging function for checking various assumptions.
fn scan_for_errors(&mut self) {
#[cfg(debug_assertions)]
{
assert!(self.alloc_acme as isize >= self.alloc_base as isize);
let alloc_span = Span::new(self.alloc_base as _, self.alloc_acme as _);
assert!(self.arena.contains_span(alloc_span));
let mut vec = Vec::<(*mut u8, *mut u8)>::new();
for g in 0..(BIN_COUNT as u8) {
let mut any = false;
unsafe {
for node in LlistNode::iter_mut(self.read_llist(g)) {
any = true;
if g < 64 {
assert!(self.availability_low & 1 << g != 0);
} else {
assert!(self.availability_high & 1 << g - 64 != 0);
}
let free_chunk = FreeChunk(node.as_ptr().cast());
let low_size = *free_chunk.size_ptr();
let high_size = *free_chunk.ptr().add(low_size - TAG_SIZE).cast::<usize>();
assert!(low_size == high_size);
assert!(free_chunk.ptr().add(low_size) <= self.alloc_acme);
if free_chunk.ptr().add(low_size) < self.alloc_acme {
let upper_tag = *free_chunk.ptr().add(low_size).cast::<Tag>();
assert!(upper_tag.is_allocated());
assert!(upper_tag.is_low_free());
} else {
assert!(self.is_top_free);
}
let low_ptr = free_chunk.ptr();
let high_ptr = low_ptr.add(low_size);
for &(other_low, other_high) in &vec {
assert!(other_high <= low_ptr || high_ptr <= other_low);
}
vec.push((low_ptr, high_ptr));
}
}
if !any {
if g < 64 {
assert!(self.availability_low & 1 << g == 0);
} else {
assert!(self.availability_high & 1 << g - 64 == 0);
}
}
}
/* vec.sort_unstable_by(|&(x, _), &(y, _)| x.cmp(&y));
eprintln!();
for (low_ptr, high_ptr) in vec {
eprintln!("{:p}..{:p} - {:x}", low_ptr, high_ptr, unsafe { high_ptr.sub_ptr(low_ptr) });
}
eprintln!("arena: {}", self.arena);
eprintln!("alloc_base: {:p}", self.alloc_base);
eprintln!("alloc_acme: {:p}", self.alloc_acme);
eprintln!(); */
}
}
}
#[cfg(test)]
mod tests {
use std;
use super::*;
#[test]
fn it_works() {
const ARENA_SIZE: usize = 10000000;
let arena = vec![0u8; ARENA_SIZE].into_boxed_slice();
let arena = Box::leak(arena);
let mut talloc = Talloc::new();
unsafe { talloc.init(arena.into()); }
let layout = Layout::from_size_align(1243, 8).unwrap();
let a = unsafe { talloc.malloc(layout) };
assert!(a.is_ok());
unsafe { a.unwrap().as_ptr().write_bytes(255, layout.size()); }
let mut x = vec![NonNull::dangling(); 1000];
let t1 = std::time::Instant::now();
for _ in 0..1000 {
for i in 0..1000 {
let allocation = unsafe { talloc.malloc(layout) };
assert!(allocation.is_ok());
unsafe { allocation.unwrap().as_ptr().write_bytes(0xab, layout.size()); }
x[i] = allocation.unwrap();
}
for i in 0..500 {
unsafe { talloc.free(x[i], layout); }
}
for i in (500..1000).rev() {
unsafe { talloc.free(x[i], layout); }
}
}
let t2 = std::time::Instant::now();
println!("duration: {:?}", (t2 - t1) / (1000 * 2000));
unsafe {
talloc.free(a.unwrap(), layout);
}
}
}