tailcall_chunk/
chunk.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
//! A Rust implementation of a persistent data structure for efficient append and concatenation operations.
//!
//! This crate provides the [`Chunk`] type, which implements a persistent data structure
//! that allows O(1) append and concatenation operations through structural sharing.
//!
//! # Features
//! - O(1) append operations
//! - O(1) concatenation operations
//! - Immutable/persistent data structure
//! - Memory efficient through structural sharing
//!
//! # Example
//! ```
//! use tailcall_chunk::Chunk;
//!
//! let chunk1 = Chunk::default().append(1).append(2);
//! let chunk2 = Chunk::default().append(3).append(4);
//! let combined = chunk1.concat(chunk2);
//!
//! assert_eq!(combined.as_vec(), vec![1, 2, 3, 4]);
//! ```

use std::rc::Rc;

/// A persistent data structure that provides efficient append and concatenation operations.
///
/// # Overview
/// `Chunk<A>` is an immutable data structure that allows O(1) complexity for append and
/// concatenation operations through structural sharing. It uses [`Rc`] (Reference Counting)
/// for efficient memory management.
///
/// # Performance
/// - Append operation: O(1)
/// - Concatenation operation: O(1)
/// - Converting to Vec: O(n)
///
/// # Implementation Details
/// The data structure is implemented as an enum with three variants:
/// - `Empty`: Represents an empty chunk
/// - `Append`: Represents a single element appended to another chunk
/// - `Concat`: Represents the concatenation of two chunks
///
/// # Examples
/// ```
/// use tailcall_chunk::Chunk;
///
/// let mut chunk = Chunk::default();
/// chunk = chunk.append(1);
/// chunk = chunk.append(2);
///
/// let other_chunk = Chunk::default().append(3).append(4);
/// let combined = chunk.concat(other_chunk);
///
/// assert_eq!(combined.as_vec(), vec![1, 2, 3, 4]);
/// ```
///
/// # References
/// - [Persistent Data Structures](https://en.wikipedia.org/wiki/Persistent_data_structure)
/// - [Structural Sharing](https://hypirion.com/musings/understanding-persistent-vector-pt-1)
#[derive(Clone)]
pub enum Chunk<A> {
    /// Represents an empty chunk
    Empty,
    /// Represents a single element `A` appended to another chunk
    Append(A, Rc<Chunk<A>>),

    /// Represents the concatenation of two chunks
    Concat(Rc<Chunk<A>>, Rc<Chunk<A>>),

    /// Represents a lazy flattening of elements
    TransformFlatten(Rc<Chunk<A>>, Rc<dyn Fn(A) -> Chunk<A>>),
}

impl<A> Default for Chunk<A> {
    /// Creates a new empty chunk.
    ///
    /// This is equivalent to using [`Chunk::Empty`].
    fn default() -> Self {
        Chunk::Empty
    }
}

impl<A> Chunk<A> {
    /// Creates a new empty chunk.
    ///
    /// # Examples
    /// ```
    /// use tailcall_chunk::Chunk;
    ///
    /// let chunk: Chunk<i32> = Chunk::new(100);
    /// assert!(!chunk.is_null());
    /// ```
    pub fn new(a: A) -> Self {
        Chunk::default().append(a)
    }

    /// Returns `true` if the chunk is empty.
    ///
    /// # Examples
    /// ```
    /// use tailcall_chunk::Chunk;
    ///
    /// let chunk: Chunk<i32> = Chunk::default();
    /// assert!(chunk.is_null());
    ///
    /// let non_empty = chunk.append(42);
    /// assert!(!non_empty.is_null());
    /// ```
    pub fn is_null(&self) -> bool {
        matches!(self, Chunk::Empty)
    }

    /// Append a new element to the chunk.
    ///
    /// This operation has O(1) complexity as it creates a new `Append` variant
    /// that references the existing chunk through an [`Rc`].
    ///
    /// # Examples
    /// ```
    /// use tailcall_chunk::Chunk;
    ///
    /// let chunk = Chunk::default().append(1).append(2);
    /// assert_eq!(chunk.as_vec(), vec![1, 2]);
    /// ```
    pub fn append(self, a: A) -> Self {
        Chunk::Append(a, Rc::new(self))
    }

    /// Prepend a new element to the beginning of the chunk.
    ///
    /// This operation has O(1) complexity as it creates a new `Concat` variant
    /// that references the existing chunk through an [`Rc`].
    ///
    /// # Examples
    /// ```
    /// use tailcall_chunk::Chunk;
    ///
    /// let chunk = Chunk::default().prepend(1).prepend(2);
    /// assert_eq!(chunk.as_vec(), vec![2, 1]);
    /// ```
    pub fn prepend(self, a: A) -> Self {
        Chunk::new(a).concat(self)
    }

    /// Concatenates this chunk with another chunk.
    ///
    /// This operation has O(1) complexity as it creates a new `Concat` variant
    /// that references both chunks through [`Rc`]s.
    ///
    /// # Performance Optimization
    /// If either chunk is empty, returns the other chunk instead of creating
    /// a new `Concat` variant.
    ///
    /// # Examples
    /// ```
    /// use tailcall_chunk::Chunk;
    ///
    /// let chunk1 = Chunk::default().append(1).append(2);
    /// let chunk2 = Chunk::default().append(3).append(4);
    /// let combined = chunk1.concat(chunk2);
    /// assert_eq!(combined.as_vec(), vec![1, 2, 3, 4]);
    /// ```
    pub fn concat(self, other: Chunk<A>) -> Chunk<A> {
        if self.is_null() {
            return other;
        }
        if other.is_null() {
            return self;
        }
        Chunk::Concat(Rc::new(self), Rc::new(other))
    }

    /// Transforms each element in the chunk using the provided function.
    ///
    /// This method creates a lazy representation of the transformation without actually
    /// performing it. The transformation is only executed when [`as_vec`](Chunk::as_vec)
    /// or [`as_vec_mut`](Chunk::as_vec_mut) is called.
    ///
    /// # Performance
    /// - Creating the transformation: O(1)
    /// - Executing the transformation (during [`as_vec`](Chunk::as_vec)): O(n)
    ///
    /// # Arguments
    /// * `f` - A function that takes a reference to an element of type `A` and returns
    ///         a new element of type `A`
    ///
    /// # Examples
    /// ```
    /// use tailcall_chunk::Chunk;
    ///
    /// let chunk = Chunk::default().append(1).append(2).append(3);
    /// // This operation is O(1) and doesn't actually transform the elements
    /// let doubled = chunk.transform(|x| x * 2);
    /// // The transformation happens here, when we call as_vec()
    /// assert_eq!(doubled.as_vec(), vec![2, 4, 6]);
    /// ```
    pub fn transform(self, f: impl Fn(A) -> A + 'static) -> Self {
        self.transform_flatten(move |a| Chunk::new(f(a)))
    }

    /// Transforms each element in the chunk into a new chunk and flattens the result.
    ///
    /// This method creates a lazy representation of the transformation without actually
    /// performing it. The transformation is only executed when [`as_vec`](Chunk::as_vec)
    /// or [`as_vec_mut`](Chunk::as_vec_mut) is called.
    ///
    /// # Performance
    /// - Creating the transformation: O(1)
    /// - Executing the transformation (during [`as_vec`](Chunk::as_vec)): O(n)
    ///
    /// # Arguments
    /// * `f` - A function that takes an element of type `A` and returns
    ///         a new `Chunk<A>`
    ///
    /// # Examples
    /// ```
    /// use tailcall_chunk::Chunk;
    ///
    /// let chunk = Chunk::default().append(1).append(2);
    /// // Transform each number x into a chunk containing [x, x+1]
    /// let expanded = chunk.transform_flatten(|x| {
    ///     Chunk::default().append(x).append(x + 1)
    /// });
    /// assert_eq!(expanded.as_vec(), vec![1, 2, 2, 3]);
    /// ```
    pub fn transform_flatten(self, f: impl Fn(A) -> Chunk<A> + 'static) -> Self {
        Chunk::TransformFlatten(Rc::new(self), Rc::new(f))
    }

    /// Converts the chunk into a vector of references to its elements.
    ///
    /// This operation has O(n) complexity where n is the number of elements
    /// in the chunk.
    ///
    /// # Examples
    /// ```
    /// use tailcall_chunk::Chunk;
    ///
    /// let chunk = Chunk::default().append(1).append(2).append(3);
    /// assert_eq!(chunk.as_vec(), vec![1, 2, 3]);
    /// ```
    pub fn as_vec(&self) -> Vec<A>
    where
        A: Clone,
    {
        let mut vec = Vec::new();
        self.as_vec_mut(&mut vec);
        vec
    }

    /// Helper method that populates a vector with references to the chunk's elements.
    ///
    /// This method is used internally by [`as_vec`](Chunk::as_vec) to avoid
    /// allocating multiple vectors during the traversal.
    ///
    /// # Arguments
    /// * `buf` - A mutable reference to a vector that will be populated with
    ///           references to the chunk's elements
    pub fn as_vec_mut(&self, buf: &mut Vec<A>)
    where
        A: Clone,
    {
        match self {
            Chunk::Empty => {}
            Chunk::Append(a, rest) => {
                rest.as_vec_mut(buf);
                buf.push(a.clone());
            }
            Chunk::Concat(a, b) => {
                a.as_vec_mut(buf);
                b.as_vec_mut(buf);
            }
            Chunk::TransformFlatten(a, f) => {
                let mut tmp = Vec::new();
                a.as_vec_mut(&mut tmp);
                for elem in tmp.into_iter() {
                    f(elem).as_vec_mut(buf);
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_new() {
        let chunk: Chunk<i32> = Chunk::default();
        assert!(chunk.is_null());
    }

    #[test]
    fn test_default() {
        let chunk: Chunk<i32> = Chunk::default();
        assert!(chunk.is_null());
    }

    #[test]
    fn test_is_null() {
        let empty: Chunk<i32> = Chunk::default();
        assert!(empty.is_null());

        let non_empty = empty.append(1);
        assert!(!non_empty.is_null());
    }

    #[test]
    fn test_append() {
        let chunk = Chunk::default().append(1).append(2).append(3);
        assert_eq!(chunk.as_vec(), vec![1, 2, 3]);

        // Test that original chunk remains unchanged (persistence)
        let chunk1 = Chunk::default().append(1);
        let chunk2 = chunk1.clone().append(2);
        assert_eq!(chunk1.as_vec(), vec![1]);
        assert_eq!(chunk2.as_vec(), vec![1, 2]);
    }

    #[test]
    fn test_concat() {
        let chunk1 = Chunk::default().append(1).append(2);
        let chunk2 = Chunk::default().append(3).append(4);
        let combined = chunk1.clone().concat(chunk2.clone());

        assert_eq!(combined.as_vec(), vec![1, 2, 3, 4]);

        // Test concatenation with empty chunks
        let empty = Chunk::default();
        assert_eq!(
            empty.clone().concat(chunk1.clone()).as_vec(),
            chunk1.as_vec()
        );
        assert_eq!(
            chunk1.clone().concat(empty.clone()).as_vec(),
            chunk1.as_vec()
        );
        assert_eq!(empty.clone().concat(empty).as_vec(), Vec::<i32>::new());
    }

    #[test]
    fn test_as_vec() {
        // Test empty chunk
        let empty: Chunk<i32> = Chunk::default();
        assert_eq!(empty.as_vec(), Vec::<i32>::new());

        // Test single element
        let single = Chunk::default().append(42);
        assert_eq!(single.as_vec(), vec![42]);

        // Test multiple elements
        let multiple = Chunk::default().append(1).append(2).append(3);
        assert_eq!(multiple.as_vec(), vec![1, 2, 3]);

        // Test complex structure with concatenation
        let chunk1 = Chunk::default().append(1).append(2);
        let chunk2 = Chunk::default().append(3).append(4);
        let complex = chunk1.concat(chunk2);
        assert_eq!(complex.as_vec(), vec![1, 2, 3, 4]);
    }

    #[test]
    fn test_structural_sharing() {
        let chunk1 = Chunk::default().append(1).append(2);
        let chunk2 = chunk1.clone().append(3);
        let chunk3 = chunk1.clone().append(4);

        // Verify that modifications create new structures while preserving the original
        assert_eq!(chunk1.as_vec(), vec![1, 2]);
        assert_eq!(chunk2.as_vec(), vec![1, 2, 3]);
        assert_eq!(chunk3.as_vec(), vec![1, 2, 4]);
    }

    #[test]
    fn test_with_different_types() {
        // Test with strings
        let string_chunk = Chunk::default()
            .append(String::from("hello"))
            .append(String::from("world"));
        assert_eq!(string_chunk.as_vec().len(), 2);

        // Test with floating point numbers
        let float_chunk = Chunk::default().append(3.14).append(2.718);
        assert_eq!(float_chunk.as_vec(), vec![3.14, 2.718]);

        // Test with boolean values
        let bool_chunk = Chunk::default().append(true).append(false).append(true);
        assert_eq!(bool_chunk.as_vec(), vec![true, false, true]);
    }

    #[test]
    fn test_transform() {
        // Test transform on empty chunk
        let empty: Chunk<i32> = Chunk::default();
        let transformed_empty = empty.transform(|x| x * 2);
        assert_eq!(transformed_empty.as_vec(), Vec::<i32>::new());

        // Test transform on single element
        let single = Chunk::default().append(5);
        let doubled = single.transform(|x| x * 2);
        assert_eq!(doubled.as_vec(), vec![10]);

        // Test transform on multiple elements
        let multiple = Chunk::default().append(1).append(2).append(3);
        let doubled = multiple.transform(|x| x * 2);
        assert_eq!(doubled.as_vec(), vec![2, 4, 6]);

        // Test transform with string manipulation
        let string_chunk = Chunk::default()
            .append(String::from("hello"))
            .append(String::from("world"));
        let uppercase = string_chunk.transform(|s| s.to_uppercase());
        assert_eq!(uppercase.as_vec(), vec!["HELLO", "WORLD"]);

        // Test chaining multiple transforms
        let numbers = Chunk::default().append(1).append(2).append(3);
        let result = numbers
            .transform(|x| x * 2)
            .transform(|x| x + 1)
            .transform(|x| x * 3);
        assert_eq!(result.as_vec(), vec![9, 15, 21]);
    }

    #[test]
    fn test_transform_flatten() {
        // Test transform_flatten on empty chunk
        let empty: Chunk<i32> = Chunk::default();
        let transformed_empty = empty.transform_flatten(|x| Chunk::new(x * 2));
        assert_eq!(transformed_empty.as_vec(), Vec::<i32>::new());

        // Test transform_flatten on single element
        let single = Chunk::default().append(5);
        let doubled = single.transform_flatten(|x| Chunk::new(x * 2));
        assert_eq!(doubled.as_vec(), vec![10]);

        // Test expanding each element into multiple elements
        let numbers = Chunk::default().append(1).append(2);
        let expanded = numbers.transform_flatten(|x| Chunk::default().append(x + 1).append(x));
        assert_eq!(expanded.as_vec(), vec![2, 1, 3, 2]);

        // Test with nested chunks
        let chunk = Chunk::default().append(1).append(2).append(3);
        let nested = chunk.transform_flatten(|x| {
            if x % 2 == 0 {
                // Even numbers expand to [x, x+1]
                Chunk::default().append(x).append(x + 1)
            } else {
                // Odd numbers expand to [x]
                Chunk::new(x)
            }
        });
        assert_eq!(nested.as_vec(), vec![1, 2, 3, 3]);

        // Test chaining transform_flatten operations
        let numbers = Chunk::default().append(1).append(2);
        let result = numbers
            .transform_flatten(|x| Chunk::default().append(x).append(x))
            .transform_flatten(|x| Chunk::default().append(x).append(x + 1));
        assert_eq!(result.as_vec(), vec![1, 2, 1, 2, 2, 3, 2, 3]);

        // Test with empty chunk results
        let chunk = Chunk::default().append(1).append(2);
        let filtered = chunk.transform_flatten(|x| {
            if x % 2 == 0 {
                Chunk::new(x)
            } else {
                Chunk::default() // Empty chunk for odd numbers
            }
        });
        assert_eq!(filtered.as_vec(), vec![2]);
    }

    #[test]
    fn test_prepend() {
        let chunk = Chunk::default().prepend(1).prepend(2).prepend(3);
        assert_eq!(chunk.as_vec(), vec![3, 2, 1]);

        // Test that original chunk remains unchanged (persistence)
        let chunk1 = Chunk::default().prepend(1);
        let chunk2 = chunk1.clone().prepend(2);
        assert_eq!(chunk1.as_vec(), vec![1]);
        assert_eq!(chunk2.as_vec(), vec![2, 1]);

        // Test mixing prepend and append
        let mixed = Chunk::default()
            .prepend(1) // [1]
            .append(2) // [1, 2]
            .prepend(3); // [3, 1, 2]
        assert_eq!(mixed.as_vec(), vec![3, 1, 2]);
    }
}