ta_lib_in_rust/indicators/long_term/mod.rs
1//! # Long-Term Trading Indicators
2//!
3//! This module provides indicators optimized for long-term trading and investing,
4//! focusing on weekly to monthly timeframes and longer-term market cycles.
5//!
6//! ## Types of Indicators
7//!
8//! - Secular trend identification
9//! - Cyclical market analysis
10//! - Long-term sentiment and valuation metrics
11//! - Multi-month to multi-year pattern recognition
12
13use polars::prelude::*;
14
15/// Calculate secular trend strength
16///
17/// Identifies the strength and duration of long-term secular
18/// market trends for position trading and investing.
19///
20/// # Arguments
21///
22/// * `df` - DataFrame with price data
23/// * `short_ma` - Short-term moving average period (e.g., 50 weeks)
24/// * `long_ma` - Long-term moving average period (e.g., 200 weeks)
25///
26/// # Returns
27///
28/// * `Result<Series, PolarsError>` - Series with trend strength values
29pub fn secular_trend_strength(
30 df: &DataFrame,
31 _short_ma: usize,
32 _long_ma: usize,
33) -> Result<Series, PolarsError> {
34 // Placeholder implementation
35 let values = vec![0.0; df.height()];
36 Ok(Series::new("secular_trend".into(), values))
37}
38
39/// Detect market cycles and phases
40///
41/// Identifies the current position within broader market cycles
42/// (accumulation, markup, distribution, markdown).
43///
44/// # Arguments
45///
46/// * `df` - DataFrame with price, volume, and possibly fundamental data
47/// * `cycle_lookback_periods` - Number of periods to analyze for cycle detection
48///
49/// # Returns
50///
51/// * `Result<Series, PolarsError>` - Series with market cycle phase indicators
52pub fn market_cycle_phase_detector(
53 df: &DataFrame,
54 _cycle_lookback_periods: usize,
55) -> Result<Series, PolarsError> {
56 // Placeholder implementation - in reality would use complex cycle analysis
57 let values = vec![0i32; df.height()]; // 0=accumulation, 1=markup, 2=distribution, 3=markdown
58 Ok(Series::new("cycle_phase".into(), values))
59}
60
61/// Calculate long-term valuation metrics
62///
63/// Combines technical and fundamental data to create valuation
64/// metrics appropriate for long-term investing decisions.
65///
66/// # Arguments
67///
68/// * `price_df` - DataFrame with price data
69/// * `fundamental_df` - DataFrame with fundamental data
70/// * `metrics` - List of valuation metrics to calculate
71///
72/// # Returns
73///
74/// * `Result<DataFrame, PolarsError>` - DataFrame with calculated valuation metrics
75pub fn long_term_valuation_metrics(
76 price_df: &DataFrame,
77 _fundamental_df: &DataFrame,
78 _metrics: &[String],
79) -> Result<DataFrame, PolarsError> {
80 // Placeholder implementation - create a simple DataFrame with empty metrics
81
82 // Use the df! macro for easier DataFrame creation
83 df! {
84 "date" => (0..price_df.height()).map(|_| chrono::Utc::now().timestamp()).collect::<Vec<i64>>(),
85 "close" => vec![0.0; price_df.height()]
86 }
87}
88
89/// Detect long-term divergences
90///
91/// Identifies divergences between price and various indicators
92/// over long timeframes for potential trend reversals.
93///
94/// # Arguments
95///
96/// * `df` - DataFrame with price and indicator data
97/// * `price_col` - Name of the price column
98/// * `indicator_col` - Name of the indicator column to compare with price
99/// * `min_divergence_periods` - Minimum periods for a valid divergence
100///
101/// # Returns
102///
103/// * `Result<Series, PolarsError>` - Series with divergence signals
104pub fn long_term_divergence_detector(
105 df: &DataFrame,
106 _price_col: &str,
107 _indicator_col: &str,
108 _min_divergence_periods: usize,
109) -> Result<Series, PolarsError> {
110 // Placeholder implementation
111 let signals = vec![0i32; df.height()]; // -1 = bearish divergence, 0 = none, 1 = bullish divergence
112 Ok(Series::new("lt_divergence".into(), signals))
113}
114
115/// Calculate long-term support and resistance zones
116///
117/// Identifies significant multi-month or multi-year support and
118/// resistance zones for strategic entry and exit points.
119///
120/// # Arguments
121///
122/// * `df` - DataFrame with OHLC price data
123/// * `min_touches` - Minimum number of touches to consider a valid zone
124/// * `price_buffer_pct` - Percentage buffer around price for zone width
125///
126/// # Returns
127///
128/// * `Result<DataFrame, PolarsError>` - DataFrame with support and resistance zones
129pub fn long_term_support_resistance(
130 _df: &DataFrame,
131 _min_touches: usize,
132 _price_buffer_pct: f64,
133) -> Result<DataFrame, PolarsError> {
134 // Placeholder implementation - create a simple DataFrame with zones
135 df! {
136 "zone_type" => vec!["support", "resistance", "support", "resistance", "support"],
137 "zone_price" => vec![100.0, 120.0, 90.0, 150.0, 80.0],
138 "zone_strength" => vec![0.8, 0.7, 0.9, 0.6, 0.5]
139 }
140}
141
142/// Detect long term trend change using moving average crossovers
143///
144/// # Arguments
145///
146/// * `df` - DataFrame with OHLC data
147/// * `short_ma` - Period for short moving average
148/// * `long_ma` - Period for long moving average
149pub fn detect_trend_change(
150 df: &DataFrame,
151 _short_ma: usize,
152 _long_ma: usize,
153) -> Result<Series, PolarsError> {
154 // Placeholder implementation
155 let signals = vec![0i32; df.height()]; // 0 = no change, 1 = bullish change, -1 = bearish change
156 Ok(Series::new("trend_change".into(), signals))
157}
158
159/// Identify secular market cycles
160///
161/// # Arguments
162///
163/// * `df` - DataFrame with OHLC data
164/// * `cycle_lookback_periods` - Number of periods to analyze for cycle detection
165pub fn identify_market_cycles(
166 df: &DataFrame,
167 _cycle_lookback_periods: usize,
168) -> Result<Series, PolarsError> {
169 // Placeholder implementation - in reality would use complex cycle analysis
170 let values = vec![0i32; df.height()]; // 0=accumulation, 1=markup, 2=distribution, 3=markdown
171 Ok(Series::new("cycle_phase".into(), values))
172}
173
174/// Correlate fundamental changes with price trends
175///
176/// # Arguments
177///
178/// * `price_df` - DataFrame with price data
179/// * `fundamental_df` - DataFrame with fundamental data
180pub fn fundamental_trend_correlation(
181 price_df: &DataFrame,
182 _fundamental_df: &DataFrame,
183) -> Result<Series, PolarsError> {
184 // Placeholder implementation - create a simple Series with correlation values
185 let values = vec![0.0; price_df.height()];
186 Ok(Series::new("fund_corr".into(), values))
187}
188
189/// Find long term price - indicator divergences
190///
191/// # Arguments
192///
193/// * `df` - DataFrame with indicator data
194/// * `price_col` - Column name for price
195/// * `indicator_col` - Column name for indicator
196/// * `min_divergence_periods` - Minimum periods to confirm divergence
197pub fn find_price_indicator_divergence(
198 df: &DataFrame,
199 _price_col: &str,
200 _indicator_col: &str,
201 _min_divergence_periods: usize,
202) -> Result<Series, PolarsError> {
203 // Placeholder implementation
204 let signals = vec![0i32; df.height()]; // -1 = bearish divergence, 0 = none, 1 = bullish divergence
205 Ok(Series::new("price_indicator_divergence".into(), signals))
206}
207
208/// Identify significant support/resistance levels
209///
210/// # Arguments
211///
212/// * `df` - DataFrame with OHLC data
213/// * `min_touches` - Minimum touches to confirm a level
214/// * `price_buffer_pct` - Buffer percentage around price levels
215pub fn identify_support_resistance(
216 _df: &DataFrame,
217 _min_touches: usize,
218 _price_buffer_pct: f64,
219) -> Result<Series, PolarsError> {
220 // Placeholder implementation - create a simple Series with support/resistance levels
221 let values = vec![0.0; 5]; // Assuming 5 levels
222 Ok(Series::new("support_resistance".into(), values))
223}