1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
use num::Zero;
use rayon::prelude::*;
use std::cmp::Ordering;
use std::collections::HashMap;
use std::iter::Iterator;
use std::sync::Arc;

use crate::{
    Dominated, ErrorKind, Game, Move, Outcome, Payoff, PerPlayer, PlayerIndex, PossibleMoves,
    PossibleOutcomes, PossibleProfiles, Profile, Record, Simultaneous, SimultaneousOutcome, Turn,
    Utility,
};

/// A game represented in [normal form](https://en.wikipedia.org/wiki/Normal-form_game).
///
/// In a normal-form game, each player plays a single move from a finite set of available moves,
/// without knowledge of other players' moves, and the payoff is determined by referring to a table
/// of possible outcomes.
///
/// # Type variables
///
/// - `M` -- The type of moves played during the game.
/// - `U` -- The type of utility value awarded to each player in a payoff.
/// - `P` -- The number of players that play the game.
///
/// # Examples
/// ```
/// use t4t::*;
///
/// let pd = Normal::symmetric(
///     vec!['C', 'D'],
///     vec![2, 0, 3, 1],
/// ).unwrap();
///
/// let nice = Player::new("Nice".to_string(), || Strategy::pure('C'));
/// let mean = Player::new("Mean".to_string(), || Strategy::pure('D'));
///
/// assert_eq!(
///     pd.play(&Matchup::from_players([nice.clone(), nice.clone()])),
///     Ok(SimultaneousOutcome::new(Profile::new(['C', 'C']), Payoff::from([2, 2]))),
/// );
/// assert_eq!(
///     pd.play(&Matchup::from_players([nice.clone(), mean.clone()])),
///     Ok(SimultaneousOutcome::new(Profile::new(['C', 'D']), Payoff::from([0, 3]))),
/// );
/// assert_eq!(
///     pd.play(&Matchup::from_players([mean.clone(), nice])),
///     Ok(SimultaneousOutcome::new(Profile::new(['D', 'C']), Payoff::from([3, 0]))),
/// );
/// assert_eq!(
///     pd.play(&Matchup::from_players([mean.clone(), mean])),
///     Ok(SimultaneousOutcome::new(Profile::new(['D', 'D']), Payoff::from([1, 1]))),
/// );
/// ```
#[derive(Clone)]
pub struct Normal<M, U, const P: usize> {
    moves: PerPlayer<Vec<M>, P>,
    payoff_fn: Arc<dyn Fn(Profile<M, P>) -> Payoff<U, P> + Send + Sync>,
}

impl<M: Move, U: Utility, const P: usize> Game<P> for Normal<M, U, P> {
    type Move = M;
    type Utility = U;
    type Outcome = SimultaneousOutcome<M, U, P>;
    type State = ();
    type View = ();

    fn first_turn(&self) -> Turn<(), M, SimultaneousOutcome<M, U, P>, P> {
        let state = Arc::new(());
        Turn::all_players(state.clone(), move |_, profile| {
            for ply in profile.plies() {
                let player = ply.player.unwrap();
                if !self.is_valid_move_for_player(player, ply.the_move) {
                    return Err(ErrorKind::InvalidMove(player, ply.the_move));
                }
            }
            Ok(Turn::end(
                state,
                SimultaneousOutcome::new(profile, self.payoff(profile)),
            ))
        })
    }

    fn state_view(&self, _state: &(), _player: PlayerIndex<P>) {}

    fn is_valid_move(&self, _state: &(), player: PlayerIndex<P>, the_move: M) -> bool {
        self.is_valid_move_for_player(player, the_move)
    }
}

impl<M: Move, U: Utility, const P: usize> Normal<M, U, P> {
    /// Construct a normal-form game given the moves available to each player and a function that
    /// yields the game's payoff given a profile containing a move played by each player.
    ///
    /// This constructor (and [from_utility_fns](Normal::from_utility_fns)) enables representing
    /// large normal-form games where it would be intractable to represent the payoff map/table
    /// directly.
    pub fn from_payoff_fn(
        moves: PerPlayer<Vec<M>, P>,
        payoff_fn: impl Fn(Profile<M, P>) -> Payoff<U, P> + Send + Sync + 'static,
    ) -> Self {
        Normal {
            moves,
            payoff_fn: Arc::new(payoff_fn),
        }
    }

    /// Construct a normal-form game given the moves available to each player and a utility
    /// function for each player.
    ///
    /// This constructor (and [from_payoff_fn](Normal::from_payoff_fn)) enables representing
    /// large normal-form games where it would be intractable to represent the payoff map/table
    /// directly.
    pub fn from_utility_fns(
        moves: PerPlayer<Vec<M>, P>,
        util_fns: PerPlayer<impl Fn(M) -> U + Send + Sync + 'static, P>,
    ) -> Self {
        let payoff_fn = move |profile: Profile<M, P>| {
            Payoff::new(PerPlayer::generate(|player| {
                util_fns[player](profile[player])
            }))
        };
        Self::from_payoff_fn(moves, payoff_fn)
    }

    /// Construct a normal-form game given the moves available to each player and a map containing
    /// the payoff associated with each valid profile.
    ///
    /// # Errors
    ///
    /// The resulting game will log an error and return a [zero payoff](Payoff::zeros) for
    /// any profile not contained in the map.
    pub fn from_payoff_map(
        moves: PerPlayer<Vec<M>, P>,
        payoff_map: HashMap<Profile<M, P>, Payoff<U, P>>,
    ) -> Self {
        let payoff_fn = move |profile| {
            if let Some(payoff) = payoff_map.get(&profile).copied() {
                payoff
            } else {
                log::error!(
                    "Normal::from_payoff_map: attempted to get the payoff of a profile not in the map: {:?}",
                    profile
                );
                Payoff::zeros()
            }
        };
        Self::from_payoff_fn(moves, payoff_fn)
    }

    /// Construct a normal-form game given the moves available to each player and a vector of
    /// payoffs in [row-major order](https://en.wikipedia.org/wiki/Row-_and_column-major_order).
    ///
    /// # Errors
    ///
    /// This constructor expects the length of the payoff vector to match the number of profiles
    /// that can be generated from the available moves.
    ///
    /// - If *too few* payoffs are provided, logs an error and returns `None`.
    /// - If *too many* payoffs are provided, logs a warning and returns a game in which the
    ///   excess payoffs are ignored.
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// let g = Normal::from_payoff_vec(
    ///     PerPlayer::new([vec!['A', 'B'], vec!['C', 'D'], vec!['E']]),
    ///     vec![
    ///         Payoff::from([1, 2, 3]), Payoff::from([4, 5, 6]),
    ///         Payoff::from([9, 8, 7]), Payoff::from([6, 5, 4]),
    ///     ]
    /// )
    /// .unwrap();
    ///
    /// assert_eq!(g.payoff(Profile::new(['A', 'C', 'E'])), Payoff::from([1, 2, 3]));
    /// assert_eq!(g.payoff(Profile::new(['A', 'D', 'E'])), Payoff::from([4, 5, 6]));
    /// assert_eq!(g.payoff(Profile::new(['B', 'C', 'E'])), Payoff::from([9, 8, 7]));
    /// assert_eq!(g.payoff(Profile::new(['B', 'D', 'E'])), Payoff::from([6, 5, 4]));
    /// ```
    pub fn from_payoff_vec(
        moves: PerPlayer<Vec<M>, P>,
        payoffs: Vec<Payoff<U, P>>,
    ) -> Option<Self> {
        let profiles: Vec<Profile<M, P>> =
            PossibleProfiles::from_move_vecs(moves.clone()).collect();
        let num_profiles = profiles.len();
        let num_payoffs = payoffs.len();
        match num_profiles.cmp(&num_payoffs) {
            Ordering::Greater => {
                log::error!(
                    "Normal::from_payoff_vec: not enough payoffs provided; expected {}, got {}",
                    num_profiles,
                    num_payoffs,
                );
                return None;
            }
            Ordering::Less => {
                log::warn!(
                    "Normal::from_payoff_vec: too many payoffs provided; expected {}, got {}",
                    num_profiles,
                    num_payoffs,
                );
            }
            Ordering::Equal => {}
        }
        let mut payoff_map = HashMap::with_capacity(num_profiles);
        for (profile, payoff) in profiles.into_iter().zip(payoffs) {
            payoff_map.insert(profile, payoff);
        }
        Some(Self::from_payoff_map(moves, payoff_map))
    }

    /// Construct a [symmetric](https://en.wikipedia.org/wiki/Symmetric_game) normal-form game.
    ///
    /// A symmetric game is the same from the perspective of every player.
    ///
    /// The game is constructed from a list of available moves and a vector of utility values for
    /// player `P0` in [row-major order](https://en.wikipedia.org/wiki/Row-_and_column-major_order).
    ///
    /// # Examples
    ///
    /// The classic [prisoner's dilemma](https://en.wikipedia.org/wiki/Prisoner%27s_dilemma) is an
    /// example of a symmetric 2-player game:
    /// ```
    /// use t4t::*;
    ///
    /// let pd = Normal::symmetric(
    ///     vec!['C', 'D'],
    ///     vec![2, 0, 3, 1],
    /// ).unwrap();
    ///
    /// assert_eq!(pd.payoff(Profile::new(['C', 'C'])), Payoff::from([2, 2]));
    /// assert_eq!(pd.payoff(Profile::new(['C', 'D'])), Payoff::from([0, 3]));
    /// assert_eq!(pd.payoff(Profile::new(['D', 'C'])), Payoff::from([3, 0]));
    /// assert_eq!(pd.payoff(Profile::new(['D', 'D'])), Payoff::from([1, 1]));
    /// ```
    ///
    /// Symmetric games can be more than two players. Here's an example of a
    /// [3-player prisoner's dilemma](https://classes.cs.uchicago.edu/archive/1998/fall/CS105/Project/node6.html),
    /// where each player's moves and payoffs are symmetric:
    ///
    /// ```
    /// use t4t::*;
    ///
    /// let pd3 = Normal::symmetric(
    ///     vec!['C', 'D'],
    ///     vec![4, 1, 1, 0, 5, 3, 3, 2],
    /// ).unwrap();
    ///
    /// assert_eq!(pd3.payoff(Profile::new(['C', 'C', 'C'])), Payoff::from([4, 4, 4]));
    /// assert_eq!(pd3.payoff(Profile::new(['C', 'C', 'D'])), Payoff::from([1, 1, 5]));
    /// assert_eq!(pd3.payoff(Profile::new(['C', 'D', 'C'])), Payoff::from([1, 5, 1]));
    /// assert_eq!(pd3.payoff(Profile::new(['C', 'D', 'D'])), Payoff::from([0, 3, 3]));
    /// assert_eq!(pd3.payoff(Profile::new(['D', 'C', 'C'])), Payoff::from([5, 1, 1]));
    /// assert_eq!(pd3.payoff(Profile::new(['D', 'C', 'D'])), Payoff::from([3, 0, 3]));
    /// assert_eq!(pd3.payoff(Profile::new(['D', 'D', 'C'])), Payoff::from([3, 3, 0]));
    /// assert_eq!(pd3.payoff(Profile::new(['D', 'D', 'D'])), Payoff::from([2, 2, 2]));
    /// ```
    ///
    /// And similarly, a 4-player prisoner's dilemma:
    ///
    /// ```
    /// use t4t::*;
    ///
    /// let pd4 = Normal::symmetric(
    ///     vec!['C', 'D'],
    ///     vec![6, 2, 2, 1, 2, 1, 1, 0, 7, 5, 5, 4, 5, 4, 4, 3],
    /// ).unwrap();
    ///
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'C', 'C', 'C'])), Payoff::from([6, 6, 6, 6]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'C', 'C', 'D'])), Payoff::from([2, 2, 2, 7]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'C', 'D', 'C'])), Payoff::from([2, 2, 7, 2]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'C', 'D', 'D'])), Payoff::from([1, 1, 5, 5]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'D', 'C', 'C'])), Payoff::from([2, 7, 2, 2]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'D', 'C', 'D'])), Payoff::from([1, 5, 1, 5]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'D', 'D', 'C'])), Payoff::from([1, 5, 5, 1]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'D', 'D', 'D'])), Payoff::from([0, 4, 4, 4]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'C', 'C', 'C'])), Payoff::from([7, 2, 2, 2]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'C', 'C', 'D'])), Payoff::from([5, 1, 1, 5]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'C', 'D', 'C'])), Payoff::from([5, 1, 5, 1]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'C', 'D', 'D'])), Payoff::from([4, 0, 4, 4]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'D', 'C', 'C'])), Payoff::from([5, 5, 1, 1]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'D', 'C', 'D'])), Payoff::from([4, 4, 0, 4]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'D', 'D', 'C'])), Payoff::from([4, 4, 4, 0]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'D', 'D', 'D'])), Payoff::from([3, 3, 3, 3]));
    /// ```
    #[allow(clippy::needless_range_loop)]
    pub fn symmetric(moves: Vec<M>, utils: Vec<U>) -> Option<Self> {
        let num_moves = moves.len();
        let size = num_moves.pow(P as u32);
        let num_utils = utils.len();
        match size.cmp(&num_utils) {
            Ordering::Greater => {
                log::error!(
                    "Normal::symmetric: not enough utility values provided; expected {}^{}={}, got {}",
                    num_moves,
                    P,
                    size,
                    num_utils,
                );
                return None;
            }
            Ordering::Less => {
                log::warn!(
                    "Normal::symmetric: too many utility values provided; expected {}^{}={}, got {}",
                    num_moves,
                    P,
                    size,
                    num_utils,
                );
            }
            Ordering::Equal => {}
        }

        // map that gives the index corresponding to each move
        let mut move_index_map = HashMap::with_capacity(num_moves);
        for (i, m) in moves.clone().into_iter().enumerate() {
            move_index_map.insert(m, i);
        }

        // vector used to translate a profile's move indexes into an index that retrieves player
        // P0's utility from the payoff vector
        let mut translate_p0 = [0; P];
        for i in 0..P {
            translate_p0[i] = num_moves.pow((P - 1 - i) as u32);
        }

        // vectors as above, but for all P players
        let mut translate = [[0; P]; P];
        for p in 0..P {
            for i in 0..P {
                translate[p][i] = translate_p0[(P + i - p) % P];
            }
        }

        // payoff function
        let payoff_fn = move |profile: Profile<M, P>| {
            // get the profile's move indexes
            let mut move_indexes = [0; P];
            for p in PlayerIndex::all() {
                let the_move = profile[p];
                if let Some(i) = move_index_map.get(&the_move).copied() {
                    move_indexes[p.as_usize()] = i;
                } else {
                    log::error!(
                        "Normal::symmetric: payoff function received in invalid move: {:?}",
                        the_move
                    );
                }
            }

            let mut payoff_utils = [U::zero(); P];
            for p in 0..P {
                // compute dot product of translation vector and profile's move indexes to get
                // index into the utility vector
                let util_index: usize = translate[p]
                    .iter()
                    .zip(move_indexes)
                    .map(|(t, i)| t * i)
                    .sum();
                payoff_utils[p] = utils[util_index];
            }
            Payoff::from(payoff_utils)
        };

        Some(Normal::from_payoff_fn(
            PerPlayer::init_with(moves),
            payoff_fn,
        ))
    }

    /// Get an iterator over the available moves for the given player.
    pub fn possible_moves_for_player(&self, player: PlayerIndex<P>) -> PossibleMoves<'_, M> {
        PossibleMoves::from_vec(self.moves[player].clone())
    }

    /// Get iterators for the moves available to each player.
    pub fn possible_moves(&self) -> PerPlayer<PossibleMoves<'_, M>, P> {
        PerPlayer::generate(|player| self.possible_moves_for_player(player))
    }

    /// Is this a valid move for the given player?
    pub fn is_valid_move_for_player(&self, player: PlayerIndex<P>, the_move: M) -> bool {
        self.moves[player].contains(&the_move)
    }

    /// Is this a valid strategy profile? A profile is valid if each move is valid for the
    /// corresponding player.
    pub fn is_valid_profile(&self, profile: Profile<M, P>) -> bool {
        PlayerIndex::all().all(|player| self.is_valid_move_for_player(player, profile[player]))
    }

    /// Get the payoff for the given strategy profile.
    ///
    /// This method may return an arbitrary payoff if given an
    /// [invalid profile](Normal::is_valid_profile).
    pub fn payoff(&self, profile: Profile<M, P>) -> Payoff<U, P> {
        (*self.payoff_fn)(profile)
    }

    /// Get the number of moves available to each player, which corresponds to the dimensions of
    /// the payoff matrix.
    pub fn dimensions(&self) -> PerPlayer<usize, P> {
        self.possible_moves().map(|ms| ms.count())
    }

    /// Get this normal form game as a simultaneous move game.
    pub fn as_simultaneous(&self) -> Simultaneous<M, U, P> {
        let moves = self.moves.clone();
        let payoff_fn = self.payoff_fn.clone();
        Simultaneous::from_payoff_fn(
            move |player, the_move| moves[player].contains(&the_move),
            move |profile| payoff_fn(profile),
        )
    }

    /// An iterator over all of the [valid](Normal::is_valid_profile) pure strategy profiles for
    /// this game.
    pub fn possible_profiles(&self) -> PossibleProfiles<'_, M, P> {
        PossibleProfiles::from_move_iters(self.possible_moves())
    }

    /// An iterator over all possible outcomes of the game.
    pub fn possible_outcomes(&self) -> PossibleOutcomes<'_, M, U, P> {
        PossibleOutcomes::new(self.possible_profiles(), self.payoff_fn.clone())
    }

    /// Is this game zero-sum? In a zero-sum game, the utility values of each payoff sum to zero.
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// let rps: Normal<_, _, 2> = Normal::symmetric(
    ///     vec!["Rock", "Paper", "Scissors"],
    ///     vec![0, -1, 1, 1, 0, -1, -1, 1, 0],
    /// ).unwrap();
    ///
    /// assert!(rps.is_zero_sum());
    ///
    /// let pd: Normal<_, _, 2> = Normal::symmetric(
    ///     vec!["Cooperate", "Defect"],
    ///     vec![2, 0, 3, 1],
    /// ).unwrap();
    ///
    /// assert!(!pd.is_zero_sum());
    /// ```
    pub fn is_zero_sum(&self) -> bool {
        self.possible_outcomes()
            .all(|outcome| outcome.payoff().is_zero_sum())
    }

    /// Return a move that unilaterally improves the given player's utility, if such a move exists.
    ///
    /// A unilateral improvement assumes that all other player's moves will be unchanged.
    ///
    /// If more than one move would unilaterally improve the player's utility, then the move that
    /// improves it by the *most* is returned.
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// #[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
    /// enum RPS { Rock, Paper, Scissors }
    ///
    /// let rps = Normal::symmetric(
    ///     vec![RPS::Rock, RPS::Paper, RPS::Scissors],
    ///     vec![ 0, -1,  1,
    ///           1,  0, -1,
    ///          -1,  1,  0,
    ///     ],
    /// ).unwrap();
    ///
    /// let rock_rock = Profile::new([RPS::Rock, RPS::Rock]);
    /// assert_eq!(rps.unilaterally_improve(for2::P0, rock_rock), Some(RPS::Paper));
    /// assert_eq!(rps.unilaterally_improve(for2::P1, rock_rock), Some(RPS::Paper));
    ///
    /// let paper_scissors = Profile::new([RPS::Paper, RPS::Scissors]);
    /// assert_eq!(rps.unilaterally_improve(for2::P0, paper_scissors), Some(RPS::Rock));
    /// assert_eq!(rps.unilaterally_improve(for2::P1, paper_scissors), None);
    ///
    /// let paper_rock = Profile::new([RPS::Paper, RPS::Rock]);
    /// assert_eq!(rps.unilaterally_improve(for2::P0, paper_rock), None);
    /// assert_eq!(rps.unilaterally_improve(for2::P1, paper_rock), Some(RPS::Scissors));
    /// ```
    pub fn unilaterally_improve(
        &self,
        player: PlayerIndex<P>,
        profile: Profile<M, P>,
    ) -> Option<M> {
        let mut best_move = None;
        if self.is_valid_profile(profile) {
            let mut best_util = self.payoff(profile)[player];
            for adjacent in self.possible_outcomes().adjacent(player, profile) {
                let util = adjacent.payoff()[player];
                if util > best_util {
                    best_move = Some(adjacent.profile()[player]);
                    best_util = util;
                }
            }
            best_move
        } else {
            log::error!(
                "IsNormal::unilaterally_improve: invalid initial profile ({:?})",
                profile,
            );
            None
        }
    }

    /// Is the given strategy profile stable? A profile is stable if no player can unilaterally
    /// improve their utility.
    ///
    /// A stable profile is a pure
    /// [Nash equilibrium](https://en.wikipedia.org/wiki/Nash_equilibrium) of the game.
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// let dilemma = Normal::symmetric(
    ///     vec!['C', 'D'],
    ///     vec![2, 0, 3, 1],
    /// ).unwrap();
    ///
    /// let hunt = Normal::symmetric(
    ///     vec!['C', 'D'],
    ///     vec![3, 0, 2, 1],
    /// ).unwrap();
    ///
    /// let cc = Profile::new(['C', 'C']);
    /// let cd = Profile::new(['C', 'D']);
    /// let dc = Profile::new(['D', 'C']);
    /// let dd = Profile::new(['D', 'D']);
    ///
    /// assert!(!dilemma.is_stable(cc));
    /// assert!(!dilemma.is_stable(cd));
    /// assert!(!dilemma.is_stable(dc));
    /// assert!(dilemma.is_stable(dd));
    ///
    /// assert!(hunt.is_stable(cc));
    /// assert!(!hunt.is_stable(cd));
    /// assert!(!hunt.is_stable(dc));
    /// assert!(hunt.is_stable(dd));
    /// ```
    pub fn is_stable(&self, profile: Profile<M, P>) -> bool {
        PlayerIndex::all().all(|player| self.unilaterally_improve(player, profile).is_none())
    }

    /// All pure [Nash equilibria](https://en.wikipedia.org/wiki/Nash_equilibrium) solutions of a
    /// finite simultaneous game.
    ///
    /// This function simply enumerates all profiles and checks to see if each one is
    /// [stable](Normal::is_stable).
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// let dilemma = Normal::symmetric(
    ///     vec!['C', 'D'],
    ///     vec![2, 0, 3, 1],
    /// ).unwrap();
    ///
    /// let hunt = Normal::symmetric(
    ///     vec!['C', 'D'],
    ///     vec![3, 0, 2, 1],
    /// ).unwrap();
    ///
    /// assert_eq!(
    ///     dilemma.pure_nash_equilibria(),
    ///     vec![Profile::new(['D', 'D'])],
    /// );
    /// assert_eq!(
    ///     hunt.pure_nash_equilibria(),
    ///     vec![Profile::new(['C', 'C']), Profile::new(['D', 'D'])],
    /// );
    /// ```
    pub fn pure_nash_equilibria(&self) -> Vec<Profile<M, P>> {
        let mut nash = Vec::new();
        for profile in self.possible_profiles() {
            if self.is_stable(profile) {
                nash.push(profile);
            }
        }
        nash
    }

    /// A variant of [`pure_nash_equilibria`](Self::pure_nash_equilibria) that analyzes the outcomes
    /// in parallel.
    pub fn pure_nash_equlibria_parallel(&self) -> Vec<Profile<M, P>> {
        let (sender, receiver) = std::sync::mpsc::channel();
        self.possible_profiles()
            .par_bridge()
            .for_each_with(sender, |s, profile| {
                if self.is_stable(profile) {
                    s.send(profile).unwrap();
                }
            });
        receiver.iter().collect()
    }

    /// Return a new profile that represents a
    /// [Pareto improvement](https://en.wikipedia.org/wiki/Pareto_efficiency)
    /// on the given profile, if one exists.
    ///
    /// A profile is a Pareto improvement over another if the payoff associated with the improved
    /// profile *increases the utility for at least one player* over the payoff associated with the
    /// original profile, *without decreasing the utility for any players*.
    pub fn pareto_improve(&self, profile: Profile<M, P>) -> Option<Profile<M, P>> {
        if self.is_valid_profile(profile) {
            let payoff = self.payoff(profile);
            let mut best_profile = None;
            let mut best_improvement = <U as Zero>::zero();
            for outcome in self.possible_outcomes() {
                if let Some(improvement) = payoff.pareto_improvement(*outcome.payoff()) {
                    if improvement.gt(&best_improvement) {
                        best_profile = Some(*outcome.profile());
                        best_improvement = improvement;
                    }
                }
            }
            best_profile
        } else {
            log::error!(
                "IsNormal::pareto_improve: invalid initial profile ({:?})",
                profile,
            );
            None
        }
    }

    /// A profile is [Pareto optimal](https://en.wikipedia.org/wiki/Pareto_efficiency) if there is
    /// no other profile that represents a [Pareto improvement](Normal::pareto_improve).
    pub fn is_pareto_optimal(&self, profile: Profile<M, P>) -> bool {
        self.pareto_improve(profile).is_none()
    }

    /// Get all profiles that are [Pareto optimal](Normal::is_pareto_optimal).
    pub fn pareto_optimal_solutions(&self) -> Vec<Profile<M, P>> {
        let mut pareto = Vec::new();
        for profile in self.possible_profiles() {
            if self.is_pareto_optimal(profile) {
                pareto.push(profile)
            }
        }
        pareto
    }

    /// A variant of [`pareto_optimal_solutions`](Self::pareto_optimal_solutions) that analyzes the
    /// outcomes in parallel.
    pub fn pareto_optimal_solutions_parallel(&self) -> Vec<Profile<M, P>> {
        let (sender, receiver) = std::sync::mpsc::channel();
        self.possible_profiles()
            .par_bridge()
            .for_each_with(sender, |s, profile| {
                if self.is_pareto_optimal(profile) {
                    s.send(profile).unwrap();
                }
            });
        receiver.iter().collect()
    }

    /// Get all dominated move relationships for the given player. If a move is dominated by
    /// multiple different moves, it will contain multiple entries in the returned vector.
    ///
    /// See the documentation for [`Dominated`] for more info.
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// let g = Normal::from_payoff_vec(
    ///     PerPlayer::new([
    ///         vec!['A', 'B', 'C'],
    ///         vec!['D', 'E'],
    ///     ]),
    ///     vec![
    ///         Payoff::from([3, 3]), Payoff::from([3, 5]),
    ///         Payoff::from([2, 0]), Payoff::from([3, 1]),
    ///         Payoff::from([4, 0]), Payoff::from([2, 1]),
    ///     ],
    /// ).unwrap();
    ///
    /// assert_eq!(g.dominated_moves_for(for2::P0), vec![Dominated::weak('B', 'A')]);
    /// assert_eq!(g.dominated_moves_for(for2::P1), vec![Dominated::strict('D', 'E')]);
    /// ```
    pub fn dominated_moves_for(&self, player: PlayerIndex<P>) -> Vec<Dominated<M>> {
        let mut dominated = Vec::new();

        for maybe_ted in self.possible_moves_for_player(player) {
            let ted_iter = self.possible_outcomes().include(player, maybe_ted);

            for maybe_tor in self.possible_moves_for_player(player) {
                if maybe_ted == maybe_tor {
                    continue;
                }

                let tor_iter = self.possible_outcomes().include(player, maybe_tor);

                let mut is_dominated = true;
                let mut is_strict = true;
                for (ted_outcome, tor_outcome) in ted_iter.clone().zip(tor_iter) {
                    let ted_payoff = ted_outcome.payoff();
                    let tor_payoff = tor_outcome.payoff();
                    if let Some(ordering) = ted_payoff[player].partial_cmp(&tor_payoff[player]) {
                        match ordering {
                            Ordering::Less => {}
                            Ordering::Equal => is_strict = false,
                            Ordering::Greater => {
                                is_dominated = false;
                                break;
                            }
                        }
                    }
                }
                if is_dominated {
                    dominated.push(Dominated {
                        dominated: maybe_ted,
                        dominator: maybe_tor,
                        is_strict,
                    });
                }
            }
        }
        dominated
    }

    /// Get all dominated move relationships for each player.
    pub fn dominated_moves(&self) -> PerPlayer<Vec<Dominated<M>>, P> {
        PerPlayer::generate(|index| self.dominated_moves_for(index))
    }
}

impl<M: Move, U: Utility> Normal<M, U, 2> {
    /// Construct a matrix game, a two-player zero-sum game where the payoffs are defined by a
    /// single matrix of utility values.
    ///
    /// Constructed from the list of moves for each player and the matrix (in row major order) of
    /// utility values for player `P0`.
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// let g = Normal::matrix(
    ///     ['A', 'B', 'C'],
    ///     ['D', 'E'],
    ///     [[-3, -1],
    ///      [ 0,  2],
    ///      [ 4,  6]],
    /// );
    ///
    /// assert!(g.is_zero_sum());
    /// assert_eq!(g.payoff(Profile::new(['A', 'D'])), Payoff::from([-3, 3]));
    /// assert_eq!(g.payoff(Profile::new(['A', 'E'])), Payoff::from([-1, 1]));
    /// assert_eq!(g.payoff(Profile::new(['B', 'D'])), Payoff::from([0, 0]));
    /// assert_eq!(g.payoff(Profile::new(['B', 'E'])), Payoff::from([2, -2]));
    /// assert_eq!(g.payoff(Profile::new(['C', 'D'])), Payoff::from([4, -4]));
    /// assert_eq!(g.payoff(Profile::new(['C', 'E'])), Payoff::from([6, -6]));
    /// ```
    pub fn matrix<const ROWS: usize, const COLS: usize>(
        row_moves: [M; ROWS],
        col_moves: [M; COLS],
        row_utils: [[U; COLS]; ROWS],
    ) -> Self {
        let moves = PerPlayer::new([row_moves.to_vec(), col_moves.to_vec()]);
        let mut payoff_map = HashMap::with_capacity(ROWS * COLS);
        for (r, row_move) in row_moves.into_iter().enumerate() {
            for (c, col_move) in col_moves.into_iter().enumerate() {
                let row_util = row_utils[r][c];
                let payoff = Payoff::from([row_util, U::zero().sub(row_util)]);
                let profile = Profile::new([row_move, col_move]);
                payoff_map.insert(profile, payoff);
            }
        }
        Normal::from_payoff_map(moves, payoff_map)
    }

    /// Construct a [bimatrix game](https://en.wikipedia.org/wiki/Bimatrix_game), a two-player
    /// game where the payoffs are defined by two matrices of utilities, one for each player.
    ///
    /// Constructed from the list of moves and the matrix (in row major order) of utility values
    /// for each player.
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// let g = Normal::bimatrix(
    ///     ['A', 'B', 'C'],
    ///     ['D', 'E'],
    ///     [[0, 5], [4, 3], [2, 1]],
    ///     [[5, 0], [1, 2], [4, 3]],
    /// );
    ///
    /// assert_eq!(g.payoff(Profile::new(['A', 'D'])), Payoff::from([0, 5]));
    /// assert_eq!(g.payoff(Profile::new(['A', 'E'])), Payoff::from([5, 0]));
    /// assert_eq!(g.payoff(Profile::new(['B', 'D'])), Payoff::from([4, 1]));
    /// assert_eq!(g.payoff(Profile::new(['B', 'E'])), Payoff::from([3, 2]));
    /// assert_eq!(g.payoff(Profile::new(['C', 'D'])), Payoff::from([2, 4]));
    /// assert_eq!(g.payoff(Profile::new(['C', 'E'])), Payoff::from([1, 3]));
    /// ```
    pub fn bimatrix<const ROWS: usize, const COLS: usize>(
        row_moves: [M; ROWS],
        col_moves: [M; COLS],
        row_utils: [[U; COLS]; ROWS],
        col_utils: [[U; COLS]; ROWS],
    ) -> Self {
        let moves = PerPlayer::new([row_moves.to_vec(), col_moves.to_vec()]);
        let mut payoff_map = HashMap::with_capacity(ROWS * COLS);
        for (r, row_move) in row_moves.into_iter().enumerate() {
            for (c, col_move) in col_moves.into_iter().enumerate() {
                let profile = Profile::new([row_move, col_move]);
                let payoff = Payoff::from([row_utils[r][c], col_utils[r][c]]);
                payoff_map.insert(profile, payoff);
            }
        }
        Normal::from_payoff_map(moves, payoff_map)
    }

    /// Construct a [symmetric](https://en.wikipedia.org/wiki/Symmetric_game) two-player
    /// normal-form game. Constructed from a list of moves available to both players and the
    /// utility values for the `ROW` player (`P0`).
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// let pd = Normal::symmetric_for2(
    ///     ['C', 'D'],
    ///     [[2, 0], [3, 1]],
    /// );
    ///
    /// assert_eq!(pd.payoff(Profile::new(['C', 'C'])), Payoff::from([2, 2]));
    /// assert_eq!(pd.payoff(Profile::new(['C', 'D'])), Payoff::from([0, 3]));
    /// assert_eq!(pd.payoff(Profile::new(['D', 'C'])), Payoff::from([3, 0]));
    /// assert_eq!(pd.payoff(Profile::new(['D', 'D'])), Payoff::from([1, 1]));
    /// ```
    pub fn symmetric_for2<const SIZE: usize>(
        moves: [M; SIZE],
        row_utils: [[U; SIZE]; SIZE],
    ) -> Self {
        let all_moves = PerPlayer::init_with(moves.to_vec());
        let mut payoff_map = HashMap::with_capacity(SIZE * SIZE);
        for (r, row_move) in moves.into_iter().enumerate() {
            for (c, col_move) in moves.into_iter().enumerate() {
                let profile = Profile::new([row_move, col_move]);
                let payoff = Payoff::from([row_utils[r][c], row_utils[c][r]]);
                payoff_map.insert(profile, payoff);
            }
        }
        Normal::from_payoff_map(all_moves, payoff_map)
    }
}

impl<M: Move, U: Utility> Normal<M, U, 3> {
    /// Construct a [symmetric](https://en.wikipedia.org/wiki/Symmetric_game) three-player
    /// normal-form game. Constructed from a list of moves available to all players and the utility
    /// values for player `P0`.
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// let pd3 = Normal::symmetric_for3(
    ///     ['C', 'D'],
    ///     [[[4, 1], [1, 0]], [[5, 3], [3, 2]]],
    /// );
    ///
    /// assert_eq!(pd3.payoff(Profile::new(['C', 'C', 'C'])), Payoff::from([4, 4, 4]));
    /// assert_eq!(pd3.payoff(Profile::new(['C', 'C', 'D'])), Payoff::from([1, 1, 5]));
    /// assert_eq!(pd3.payoff(Profile::new(['C', 'D', 'C'])), Payoff::from([1, 5, 1]));
    /// assert_eq!(pd3.payoff(Profile::new(['C', 'D', 'D'])), Payoff::from([0, 3, 3]));
    /// assert_eq!(pd3.payoff(Profile::new(['D', 'C', 'C'])), Payoff::from([5, 1, 1]));
    /// assert_eq!(pd3.payoff(Profile::new(['D', 'C', 'D'])), Payoff::from([3, 0, 3]));
    /// assert_eq!(pd3.payoff(Profile::new(['D', 'D', 'C'])), Payoff::from([3, 3, 0]));
    /// assert_eq!(pd3.payoff(Profile::new(['D', 'D', 'D'])), Payoff::from([2, 2, 2]));
    /// ```
    pub fn symmetric_for3<const SIZE: usize>(
        moves: [M; SIZE],
        p0_utils: [[[U; SIZE]; SIZE]; SIZE],
    ) -> Self {
        let all_moves = PerPlayer::init_with(moves.to_vec());
        let mut payoff_map = HashMap::with_capacity(SIZE.pow(3));
        for (i0, m0) in moves.into_iter().enumerate() {
            for (i1, m1) in moves.into_iter().enumerate() {
                for (i2, m2) in moves.into_iter().enumerate() {
                    let u0 = p0_utils[i0][i1][i2];
                    let u1 = p0_utils[i1][i2][i0];
                    let u2 = p0_utils[i2][i0][i1];
                    let payoff = Payoff::from([u0, u1, u2]);
                    let profile = Profile::new([m0, m1, m2]);
                    payoff_map.insert(profile, payoff);
                }
            }
        }
        Normal::from_payoff_map(all_moves, payoff_map)
    }
}

impl<M: Move, U: Utility> Normal<M, U, 4> {
    /// Construct a [symmetric](https://en.wikipedia.org/wiki/Symmetric_game) four-player
    /// normal-form game. Constructed from a list of moves available to all players and the utility
    /// values for player `P0`.
    ///
    /// # Examples
    /// ```
    /// use t4t::*;
    ///
    /// let pd4 = Normal::symmetric_for4(
    ///     ['C', 'D'],
    ///     [[[[6, 2], [2, 1]], [[2, 1], [1, 0]]],
    ///      [[[7, 5], [5, 4]], [[5, 4], [4, 3]]]],
    /// );
    ///
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'C', 'C', 'C'])), Payoff::from([6, 6, 6, 6]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'C', 'C', 'D'])), Payoff::from([2, 2, 2, 7]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'C', 'D', 'C'])), Payoff::from([2, 2, 7, 2]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'C', 'D', 'D'])), Payoff::from([1, 1, 5, 5]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'D', 'C', 'C'])), Payoff::from([2, 7, 2, 2]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'D', 'C', 'D'])), Payoff::from([1, 5, 1, 5]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'D', 'D', 'C'])), Payoff::from([1, 5, 5, 1]));
    /// assert_eq!(pd4.payoff(Profile::new(['C', 'D', 'D', 'D'])), Payoff::from([0, 4, 4, 4]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'C', 'C', 'C'])), Payoff::from([7, 2, 2, 2]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'C', 'C', 'D'])), Payoff::from([5, 1, 1, 5]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'C', 'D', 'C'])), Payoff::from([5, 1, 5, 1]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'C', 'D', 'D'])), Payoff::from([4, 0, 4, 4]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'D', 'C', 'C'])), Payoff::from([5, 5, 1, 1]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'D', 'C', 'D'])), Payoff::from([4, 4, 0, 4]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'D', 'D', 'C'])), Payoff::from([4, 4, 4, 0]));
    /// assert_eq!(pd4.payoff(Profile::new(['D', 'D', 'D', 'D'])), Payoff::from([3, 3, 3, 3]));
    /// ```
    pub fn symmetric_for4<const SIZE: usize>(
        moves: [M; SIZE],
        p0_utils: [[[[U; SIZE]; SIZE]; SIZE]; SIZE],
    ) -> Self {
        let all_moves = PerPlayer::init_with(moves.to_vec());
        let mut payoff_map = HashMap::with_capacity(SIZE.pow(4));
        for (i0, m0) in moves.into_iter().enumerate() {
            for (i1, m1) in moves.into_iter().enumerate() {
                for (i2, m2) in moves.into_iter().enumerate() {
                    for (i3, m3) in moves.into_iter().enumerate() {
                        let u0 = p0_utils[i0][i1][i2][i3];
                        let u1 = p0_utils[i1][i2][i3][i0];
                        let u2 = p0_utils[i2][i3][i0][i1];
                        let u3 = p0_utils[i3][i0][i1][i2];
                        let payoff = Payoff::from([u0, u1, u2, u3]);
                        let profile = Profile::new([m0, m1, m2, m3]);
                        payoff_map.insert(profile, payoff);
                    }
                }
            }
        }
        Normal::from_payoff_map(all_moves, payoff_map)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use impls::impls;
    use test_log::test;

    #[test]
    fn normal_is_send_sync() {
        assert!(impls!(Normal<(), u8, 2>: Send & Sync));
    }
}