1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Rust Bitcoin Library
// Written in 2014 by
//     Andrew Poelstra <apoelstra@wpsoftware.net>
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! Private key
//!
//! A private key represents the secret data associated with its proposed use
//!

use std::fmt::{self, Write};
use std::str::FromStr;
use secp256k1::{self, Secp256k1};
use secp256k1::key::{PublicKey, SecretKey};
use util::address::Address;
use consensus::encode;
use network::constants::Network;
use util::base58;

#[derive(Clone, PartialEq, Eq)]
/// A Bitcoin ECDSA private key
pub struct Privkey {
    /// Whether this private key represents a compressed address
    pub compressed: bool,
    /// The network on which this key should be used
    pub network: Network,
    /// The actual ECDSA key
    pub key: SecretKey
}

impl Privkey {
    /// Creates a `Privkey` from a raw secp256k1 secret key
    #[inline]
    pub fn from_secret_key(key: SecretKey, compressed: bool, network: Network) -> Privkey {
        Privkey {
            compressed: compressed,
            network: network,
            key: key,
        }
    }

    /// Computes the public key as supposed to be used with this secret
    pub fn public_key<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> PublicKey {
        PublicKey::from_secret_key(secp, &self.key)
    }

    /// Converts a private key to a segwit address
    #[inline]
    pub fn to_address<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> Address {
        Address::p2wpkh(&self.public_key(secp), self.network)
    }

    /// Converts a private key to a legacy (non-segwit) address
    #[inline]
    pub fn to_legacy_address<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> Address {
        if self.compressed {
            Address::p2pkh(&self.public_key(secp), self.network)
        }
        else {
            Address::p2upkh(&self.public_key(secp), self.network)
        }
    }

    /// Accessor for the underlying secp key
    #[inline]
    pub fn secret_key(&self) -> &SecretKey {
        &self.key
    }

    /// Accessor for the underlying secp key that consumes the privkey
    #[inline]
    pub fn into_secret_key(self) -> SecretKey {
        self.key
    }

    /// Accessor for the network type
    #[inline]
    pub fn network(&self) -> Network {
        self.network
    }

    /// Accessor for the compressed flag
    #[inline]
    pub fn is_compressed(&self) -> bool {
        self.compressed
    }

    /// Format the private key to WIF format.
    pub fn fmt_wif(&self, fmt: &mut fmt::Write) -> fmt::Result {
        let mut ret = [0; 34];
        ret[0] = match self.network {
            Network::Bitcoin => 128,
            Network::Testnet | Network::Regtest => 239,
        };
        ret[1..33].copy_from_slice(&self.key[..]);
        let privkey = if self.compressed {
            ret[33] = 1;
            base58::check_encode_slice(&ret[..])
        } else {
            base58::check_encode_slice(&ret[..33])
        };
        fmt.write_str(&privkey)
    }

    /// Get WIF encoding of this private key.
    #[inline]
    pub fn to_wif(&self) -> String {
        let mut buf = String::new();
        buf.write_fmt(format_args!("{}", self)).unwrap();
        buf.shrink_to_fit();
        buf
    }

    /// Parse WIF encoded private key.
    pub fn from_wif(wif: &str) -> Result<Privkey, encode::Error> {
        let data = base58::from_check(wif)?;

        let compressed = match data.len() {
            33 => false,
            34 => true,
            _ => { return Err(encode::Error::Base58(base58::Error::InvalidLength(data.len()))); }
        };

        let network = match data[0] {
            128 => Network::Bitcoin,
            239 => Network::Testnet,
            x   => { return Err(encode::Error::Base58(base58::Error::InvalidVersion(vec![x]))); }
        };

        let key = SecretKey::from_slice(&data[1..33])
            .map_err(|_| base58::Error::Other("Secret key out of range".to_owned()))?;

        Ok(Privkey {
            compressed: compressed,
            network: network,
            key: key
        })
    }
}

impl fmt::Display for Privkey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.fmt_wif(f)
    }
}

impl fmt::Debug for Privkey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "[private key data]")
    }
}

impl FromStr for Privkey {
    type Err = encode::Error;
    fn from_str(s: &str) -> Result<Privkey, encode::Error> {
        Privkey::from_wif(s)
    }
}

#[cfg(test)]
mod tests {
    use super::Privkey;
    use secp256k1::Secp256k1;
    use std::str::FromStr;
    use network::constants::Network::Testnet;
    use network::constants::Network::Bitcoin;

    #[test]
    fn test_key_derivation() {
        // testnet compressed
        let sk = Privkey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
        assert_eq!(sk.network(), Testnet);
        assert_eq!(sk.is_compressed(), true);
        assert_eq!(&sk.to_wif(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");

        let secp = Secp256k1::new();
        let pk = sk.to_legacy_address(&secp);
        assert_eq!(&pk.to_string(), "TLQ5fyDRFk6HjByV1bsHiy4BvwkVj1Vt3C");

        // test string conversion
        assert_eq!(&sk.to_string(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
        let sk_str =
            Privkey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
        assert_eq!(&sk.to_wif(), &sk_str.to_wif());

        // mainnet uncompressed
        let sk = Privkey::from_wif("5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3").unwrap();
        assert_eq!(sk.network(), Bitcoin);
        assert_eq!(sk.is_compressed(), false);
        assert_eq!(&sk.to_wif(), "5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3");

        let secp = Secp256k1::new();
        let pk = sk.to_legacy_address(&secp);
        assert_eq!(&pk.to_string(), "SczQx5sn4W9mdEyQtDVqqWZSZeBaGANBkQ");
    }
}