1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
//! # Attack, Decay, Sustain, Release generator
//!
//! ## Acronyms used:
//!
//! - `ADSR`: Attack Decay Sustain Release generator
//! - `LUT`: Look Up Table
//! - `DDS`: Direct Digital Synthesis
//!
//! ADSRs are a standard component of most analog synthesizers, used to
//! dynamically modulate various parameters of synthesizers, most commonly
//! loudness, timbre, or pitch.
//!
//! This ADSR simulates the RC curves typically found in analog ADSRs, where
//! the attack curve is a truncated up-going convex RC curve, and the decay and
//! release curves are down-going concave RC curves.
//!
//! This ADSR has four variable input parameters:
//!
//! - Attack time
//! - Decay time
//! - Sustain level
//! - Release time
//!
//! This ADSR responds to two types of time based events:
//!
//! - Gate On events initiate an attack phase
//! - Gate Off events initiate a release phase
//!
//! This ADSR has a single output:
//!
//! - The current sample of the ADSR waveform in the range [0.0, 1.0].
//!
//! A Phase-Accumulator and Look-Up-Table (LUT) approach is used.
//! This is known as "Direct Digital Synthesis", or DDS.
//!
//! LUTs are used to store the Attack and Decay curves for the ADSRs. These
//! curves simulate the typical resistor/capacitor time constant curves used in
//! analog ADSRs.
use crate::{lookup_tables, phase_accumulator::PhaseAccumulator, utils::*};
/// An ADSR envelope generator is represented here
pub struct Adsr {
attack_time: TimePeriod,
decay_time: TimePeriod,
sustain_level: SustainLevel,
release_time: TimePeriod,
phase_accumulator: PhaseAccumulator<TOT_NUM_ACCUM_BITS, NUM_LUT_INDEX_BITS>,
state: State,
value_when_gate_on_received: f32,
value_when_gate_off_received: f32,
value: f32,
}
impl Adsr {
/// `Adrs::new(sr)` is a new ADSR with sample rate `sr`
pub fn new(sample_rate_hz: f32) -> Self {
Self {
// set defaults for very fast times and 100% on sustain
attack_time: MIN_TIME_PERIOD_SEC.into(),
decay_time: MIN_TIME_PERIOD_SEC.into(),
sustain_level: 1.0_f32.into(),
release_time: MIN_TIME_PERIOD_SEC.into(),
phase_accumulator: PhaseAccumulator::new(sample_rate_hz),
state: State::AtRest,
value_when_gate_on_received: 0.0_f32,
value_when_gate_off_received: 0.0_f32,
value: 0.0f32,
}
}
/// `adsr.tick()` advances the ADSR by 1 tick, must be called at the sample rate
pub fn tick(&mut self) {
// only calculate frequency and tick the accumulator for tick-able states
if self.state == State::Attack || self.state == State::Decay || self.state == State::Release
{
let period_of_this_phase = match self.state {
State::Attack => self.attack_time.0,
State::Decay => self.decay_time.0,
State::Release => self.release_time.0,
// SUSTAIN and AT-REST have no period, these can never happen here. But don't use wildcards, we want the
// compiler to complain if anyone adds more stages to make more complex envelopes (hold time, whatever)
State::Sustain => MIN_TIME_PERIOD_SEC,
State::AtRest => MIN_TIME_PERIOD_SEC,
};
self.phase_accumulator.set_period(period_of_this_phase);
self.phase_accumulator.tick();
if self.phase_accumulator.rolled_over() {
self.state = match self.state {
State::Attack => State::Decay,
State::Decay => State::Sustain,
State::Release => State::AtRest,
// SUSTAIN and AT-REST can't happen here, but explicitly match all arms
State::Sustain => State::Sustain,
State::AtRest => State::AtRest,
};
}
}
// calculate the output no matter which state
self.value = self.calc_value();
}
/// `adsr.gate_on()` sends a gate-on message to the ADSR, triggering an ATTACK phase if it's not already in ATTACK
///
/// Attack phases may be re-triggered by sending a new gate-on message during any phase.
pub fn gate_on(&mut self) {
match self.state {
State::AtRest | State::Decay | State::Sustain | State::Release => {
self.value_when_gate_on_received = self.value;
self.phase_accumulator.reset();
self.state = State::Attack;
}
State::Attack => (), // ignore the message, we're already in an attack phase
}
}
/// `adsr.gate_off()` sends a gate-off message to the ADSR, triggering a RELEASE phase unless it's already RELEASED
pub fn gate_off(&mut self) {
match self.state {
State::Attack | State::Decay | State::Sustain => {
self.value_when_gate_off_received = self.value;
self.phase_accumulator.reset();
self.state = State::Release;
}
State::Release | State::AtRest => (), // ignore the message, we're already in a release or at-rest phase
}
}
/// `adsr.value()` is the current value of the ADSR in `[0.0, 1.0]`
pub fn value(&self) -> f32 {
self.value
}
/// `adsr.set_input(i)` sets the given ADSR input
///
/// # Examples
///
/// ```
/// # use synth_utils::adsr;
/// # let mut adsr = adsr::Adsr::new(1_000.0_f32);
///
/// // set attack time to 30 milliseconds
/// adsr.set_input(adsr::Input::Attack(0.03_f32.into()));
///
/// // set decay time to 100 milliseconds
/// adsr.set_input(adsr::Input::Decay(0.1_f32.into()));
///
/// // set sustain level to 3/4 way up
/// adsr.set_input(adsr::Input::Sustain(0.75_f32.into()));
///
/// // set release time to 150 milliseconds
/// adsr.set_input(adsr::Input::Release(0.15_f32.into()));
/// ```
pub fn set_input(&mut self, input: Input) {
match input {
Input::Attack(a) => self.attack_time = a,
Input::Decay(d) => self.decay_time = d,
Input::Sustain(s) => self.sustain_level = s,
Input::Release(r) => self.release_time = r,
}
}
/// `adsr.calc_value()` is a private helper function to calculate the current ADSR value
fn calc_value(&self) -> f32 {
// The coefficient for the sample is between 0 and 1.0. This is used to
// "squish" the attack, decay, and release curves as needed.
// Example: the decay curve starts at full scale, and ramps down to the sustain
// level. The range of the decay curve from top to bottom is full-scale at the
// top to sustain level at the bottom. The decay curve must be compressed to
// fit in this reduced range. The coefficient variable helps accomplish this.
let coefficient: f32;
// The value of the current sample. This will come from the attack LUT if the
// current state is attack, from the decay LUT if the current state is decay
// or release, and from the sustain level input if the current state is
// sustain. If the current state is at-rest, the value of the sample will be zero
let sample: f32;
// The offset for the current sample. This is only non-zero when an attack
// phase begins while the ADSR is not at rest, or a decay phase begins while
// the sustain level is non-zero. Basically this is how much to "push up" the
// ADSR curve, so that it fits between the starting value for the curve segment
// and the target value for the curve segment.
let offset: f32;
let lut_idx = self.phase_accumulator.index();
// next idx is for interpolation, clamp at the end to avoid bad behavior, we don't want to wrap around here
let next_lut_idx = (lut_idx + 1).min(lookup_tables::ADSR_CURVE_LUT_SIZE - 1);
match self.state {
State::Attack => {
let y0 = lookup_tables::ADSR_ATTACK_TABLE[lut_idx];
let y1 = lookup_tables::ADSR_ATTACK_TABLE[next_lut_idx];
coefficient = 1.0_f32 - self.value_when_gate_on_received;
sample = linear_interp(y0, y1, self.phase_accumulator.fraction());
offset = self.value_when_gate_on_received;
}
State::Decay => {
let y0 = lookup_tables::ADSR_DECAY_TABLE[lut_idx];
let y1 = lookup_tables::ADSR_DECAY_TABLE[next_lut_idx];
coefficient = 1.0_f32 - self.sustain_level.0;
sample = linear_interp(y0, y1, self.phase_accumulator.fraction());
offset = self.sustain_level.0;
}
State::Sustain => {
coefficient = 1.0_f32;
sample = self.sustain_level.0;
offset = 0.0;
}
State::Release => {
let y0 = lookup_tables::ADSR_DECAY_TABLE[lut_idx];
let y1 = lookup_tables::ADSR_DECAY_TABLE[next_lut_idx];
coefficient = self.value_when_gate_off_received;
sample = linear_interp(y0, y1, self.phase_accumulator.fraction());
offset = 0.0;
}
State::AtRest => {
coefficient = 0.0_f32;
sample = 0.0_f32;
offset = 0.0;
}
};
coefficient * sample + offset
}
}
/// ADSR input types are represented here
///
/// A, D, and S are represented as positive-only time periods, S is represented as a number in `[0.0, 1.0]`
pub enum Input {
Attack(TimePeriod),
Decay(TimePeriod),
Sustain(SustainLevel),
Release(TimePeriod),
}
/// A time period in seconds is represented here
///
/// Time periods are positive only numbers with min and max values in a pleasing range for users of the ADSR
pub struct TimePeriod(f32);
impl From<f32> for TimePeriod {
fn from(p: f32) -> Self {
Self(p.max(MIN_TIME_PERIOD_SEC).min(MAX_TIME_PERIOD_SEC))
}
}
/// A sustain level in the range `[0.0, 1.0]` is represented here
pub struct SustainLevel(f32);
impl From<f32> for SustainLevel {
fn from(val: f32) -> Self {
Self(val.max(0.0_f32).min(1.0_f32))
}
}
/// ADSR states are represented here
///
/// An ADSR is in exactly one of these states at any given time
#[derive(Clone, Copy, Eq, PartialEq, Debug)]
pub enum State {
AtRest,
Attack,
Decay,
Sustain,
Release,
}
/// The minimum time period for an ADSR state period
pub const MIN_TIME_PERIOD_SEC: f32 = 0.001_f32;
/// The maximum time period for an ADSR state period
pub const MAX_TIME_PERIOD_SEC: f32 = 20.0_f32;
/// The total number of bits to use for the phase accumulator
///
/// Must be in `[1..32]`
const TOT_NUM_ACCUM_BITS: u32 = 24;
/// The number of index bits, depends on the lookup tables used
///
/// Note that the lookup table size MUST be a power of 2
const NUM_LUT_INDEX_BITS: u32 = ilog_2(lookup_tables::ADSR_CURVE_LUT_SIZE);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn gate_on_starts_attack_phase_from_at_rest() {
let mut adsr = Adsr::new(1_000.0_f32);
//. it starts out at-rest
assert_eq!(adsr.state, State::AtRest);
adsr.gate_on();
assert_eq!(adsr.state, State::Attack);
}
#[test]
fn attack_transitions_to_decay_after_ticks() {
let mut adsr = Adsr::new(1_000.0_f32);
// 100 millisecond stages at 1kHz sample rate should complete after 101 ticks
adsr.set_input(Input::Attack(0.1.into()));
adsr.gate_on();
assert_eq!(adsr.state, State::Attack);
// almost done with attack phase
for _ in 0..100 {
adsr.tick();
}
assert_eq!(adsr.state, State::Attack);
// one more tick puts us into a decay phase
adsr.tick();
assert_eq!(adsr.state, State::Decay);
}
#[test]
fn transition_through_phases() {
let mut adsr = Adsr::new(1_000.0_f32);
// 100 millisecond stages at 1kHz sample rate should complete after 101 ticks
adsr.set_input(Input::Attack(0.1.into()));
adsr.set_input(Input::Decay(0.1.into()));
adsr.set_input(Input::Sustain(0.5.into()));
adsr.set_input(Input::Release(0.1.into()));
adsr.gate_on();
for _ in 0..101 {
adsr.tick();
}
assert_eq!(adsr.state, State::Decay);
for _ in 0..101 {
adsr.tick();
}
assert_eq!(adsr.state, State::Sustain);
// only a gate-off message initiates a release phase
adsr.gate_off();
assert_eq!(adsr.state, State::Release);
for _ in 0..101 {
adsr.tick();
}
assert_eq!(adsr.state, State::AtRest);
}
#[test]
fn attack_can_retrigger_in_any_phase() {
let mut adsr = Adsr::new(1_000.0_f32);
// 100 millisecond stages at 1kHz sample rate should complete after 101 ticks
adsr.set_input(Input::Attack(0.1.into()));
adsr.set_input(Input::Decay(0.1.into()));
adsr.set_input(Input::Sustain(0.5.into()));
adsr.set_input(Input::Release(0.1.into()));
adsr.gate_on();
for _ in 0..101 {
adsr.tick();
}
assert_eq!(adsr.state, State::Decay);
adsr.gate_on();
assert_eq!(adsr.state, State::Attack);
for _ in 0..202 {
adsr.tick();
}
assert_eq!(adsr.state, State::Sustain);
adsr.gate_on();
assert_eq!(adsr.state, State::Attack);
for _ in 0..202 {
adsr.tick();
}
adsr.gate_off();
assert_eq!(adsr.state, State::Release);
adsr.gate_on();
assert_eq!(adsr.state, State::Attack);
}
#[test]
fn release_can_start_from_any_phase_but_at_rest() {
let mut adsr = Adsr::new(1_000.0_f32);
// 100 millisecond stages at 1kHz sample rate should complete after 101 ticks
adsr.set_input(Input::Attack(0.1.into()));
adsr.set_input(Input::Decay(0.1.into()));
adsr.set_input(Input::Sustain(0.5.into()));
adsr.set_input(Input::Release(0.1.into()));
adsr.gate_on();
for _ in 0..50 {
adsr.tick();
}
assert_eq!(adsr.state, State::Attack);
adsr.gate_off();
assert_eq!(adsr.state, State::Release);
adsr.gate_on();
for _ in 0..101 {
adsr.tick();
}
assert_eq!(adsr.state, State::Decay);
adsr.gate_off();
assert_eq!(adsr.state, State::Release);
adsr.gate_on();
for _ in 0..202 {
adsr.tick();
}
assert_eq!(adsr.state, State::Sustain);
adsr.gate_off();
assert_eq!(adsr.state, State::Release);
for _ in 0..101 {
adsr.tick();
}
assert_eq!(adsr.state, State::AtRest);
// turning the gate off when we're already at rest doesn't start a new release phase
adsr.gate_off();
assert_eq!(adsr.state, State::AtRest);
}
}