1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
use std::convert::TryFrom;
use std::f64;
use serde::Deserialize;
use tch::Tensor;
use crate::module::FallibleModule;
use crate::TransformerError;
#[derive(Clone, Copy, Debug, Deserialize, Eq, PartialEq)]
#[serde(try_from = "String")]
pub enum Activation {
Gelu,
GeluNew,
Relu,
}
impl TryFrom<&str> for Activation {
type Error = TransformerError;
fn try_from(value: &str) -> Result<Self, Self::Error> {
match value {
"gelu" => Ok(Activation::Gelu),
"gelu_new" => Ok(Activation::GeluNew),
"relu" => Ok(Activation::Relu),
unknown => Err(TransformerError::UnknownActivationFunction {
activation: unknown.to_string(),
}),
}
}
}
impl TryFrom<String> for Activation {
type Error = TransformerError;
fn try_from(value: String) -> Result<Self, Self::Error> {
Self::try_from(value.as_str())
}
}
impl FallibleModule for Activation {
type Error = TransformerError;
fn forward(&self, input: &Tensor) -> Result<Tensor, Self::Error> {
match self {
Self::Gelu => Ok(input.f_gelu("none")?),
Self::GeluNew => Ok(0.5
* input
* (1.0
+ Tensor::f_tanh(
&((2. / f64::consts::PI).sqrt()
* (input + 0.044715 * input.pow_tensor_scalar(3.0))),
)?)),
Self::Relu => Ok(input.f_relu()?),
}
}
}
#[cfg(test)]
mod tests {
use std::convert::TryInto;
use approx::assert_abs_diff_eq;
use ndarray::{array, ArrayD};
use tch::Tensor;
use crate::activations::Activation;
use crate::module::FallibleModule;
#[test]
fn gelu_new_returns_correct_values() {
let gelu_new = Activation::GeluNew;
let activations: ArrayD<f32> = (&gelu_new
.forward(&Tensor::of_slice(&[-1., -0.5, 0., 0.5, 1.]))
.unwrap())
.try_into()
.unwrap();
assert_abs_diff_eq!(
activations,
array![-0.1588, -0.1543, 0.0000, 0.3457, 0.8412].into_dyn(),
epsilon = 1e-4
);
}
}