1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
use std::borrow::Borrow;

use syntaxdot_tch_ext::PathExt;
use tch::nn::Module;
use tch::Tensor;

use crate::error::TransformerError;
use crate::models::albert::{AlbertConfig, AlbertEmbeddingProjection};
use crate::models::bert::BertLayer;
use crate::models::layer_output::LayerOutput;
use crate::models::Encoder;
use crate::util::LogitsMask;

/// ALBERT encoder.
///
/// This encoder uses the BERT encoder with two modifications:
///
/// 1. The embeddings are projected to fit the hidden layer size.
/// 2. Weights are shared between layers.
#[derive(Debug)]
pub struct AlbertEncoder {
    groups: Vec<BertLayer>,
    n_layers: i64,
    projection: AlbertEmbeddingProjection,
}

impl AlbertEncoder {
    pub fn new<'a>(
        vs: impl Borrow<PathExt<'a>>,
        config: &AlbertConfig,
    ) -> Result<Self, TransformerError> {
        assert!(
            config.num_hidden_groups > 0,
            "Need at least 1 hidden group, got: {}",
            config.num_hidden_groups
        );

        let vs = vs.borrow();

        let mut groups = Vec::with_capacity(config.num_hidden_groups as usize);
        for group_idx in 0..config.num_hidden_groups {
            groups.push(BertLayer::new(
                vs.sub(format!("group_{}", group_idx)).sub("inner_group_0"),
                &config.into(),
            )?);
        }
        let projection = AlbertEmbeddingProjection::new(vs, config)?;

        Ok(AlbertEncoder {
            groups,
            n_layers: config.num_hidden_layers,
            projection,
        })
    }
}

impl Encoder for AlbertEncoder {
    fn encode(
        &self,
        input: &Tensor,
        attention_mask: Option<&Tensor>,
        train: bool,
    ) -> Result<Vec<LayerOutput>, TransformerError> {
        let mut all_layer_outputs = Vec::with_capacity(self.n_layers as usize + 1);

        let input = self.projection.forward(input);

        all_layer_outputs.push(LayerOutput::Embedding(input.shallow_clone()));

        let attention_mask = attention_mask.map(LogitsMask::from_bool_mask).transpose()?;

        let layers_per_group = self.n_layers as usize / self.groups.len();

        let mut hidden_states = input;
        for idx in 0..self.n_layers {
            let layer_output = self.groups[idx as usize / layers_per_group].forward_t(
                &hidden_states,
                attention_mask.as_ref(),
                train,
            )?;

            hidden_states = layer_output.output().shallow_clone();

            all_layer_outputs.push(layer_output);
        }

        Ok(all_layer_outputs)
    }

    fn n_layers(&self) -> i64 {
        self.n_layers + 1
    }
}

#[cfg(feature = "model-tests")]
#[cfg(test)]
mod tests {
    use std::collections::BTreeSet;
    use std::convert::TryInto;

    use approx::assert_abs_diff_eq;
    use maplit::btreeset;
    use ndarray::{array, ArrayD};
    use syntaxdot_tch_ext::RootExt;
    use tch::nn::VarStore;
    use tch::{Device, Kind, Tensor};

    use super::AlbertEncoder;
    use crate::activations::Activation;
    use crate::models::albert::{AlbertConfig, AlbertEmbeddings};
    use crate::models::Encoder;
    use crate::module::FallibleModuleT;

    const ALBERT_BASE_V2: &str = env!("ALBERT_BASE_V2");

    fn albert_config() -> AlbertConfig {
        AlbertConfig {
            attention_probs_dropout_prob: 0.,
            embedding_size: 128,
            hidden_act: Activation::GeluNew,
            hidden_dropout_prob: 0.,
            hidden_size: 768,
            initializer_range: 0.02,
            inner_group_num: 1,
            intermediate_size: 3072,
            max_position_embeddings: 512,
            num_attention_heads: 12,
            num_hidden_groups: 1,
            num_hidden_layers: 12,
            type_vocab_size: 2,
            vocab_size: 30000,
        }
    }

    fn layer_variables() -> BTreeSet<String> {
        btreeset![
            "attention.output.dense.bias".to_string(),
            "attention.output.dense.weight".to_string(),
            "attention.output.layer_norm.bias".to_string(),
            "attention.output.layer_norm.weight".to_string(),
            "attention.self.key.bias".to_string(),
            "attention.self.key.weight".to_string(),
            "attention.self.query.bias".to_string(),
            "attention.self.query.weight".to_string(),
            "attention.self.value.bias".to_string(),
            "attention.self.value.weight".to_string(),
            "intermediate.dense.bias".to_string(),
            "intermediate.dense.weight".to_string(),
            "output.dense.bias".to_string(),
            "output.dense.weight".to_string(),
            "output.layer_norm.bias".to_string(),
            "output.layer_norm.weight".to_string()
        ]
    }

    fn seqlen_to_mask(seq_lens: Tensor, max_len: i64) -> Tensor {
        let batch_size = seq_lens.size()[0];
        Tensor::arange(max_len, (Kind::Int, Device::Cpu))
            // Construct a matrix [batch_size, max_len] where each row
            // is 0..(max_len - 1).
            .repeat(&[batch_size])
            .view_(&[batch_size, max_len])
            // Time steps less than the length in seq_lens are active.
            .lt_tensor(&seq_lens.unsqueeze(1))
    }

    fn varstore_variables(vs: &VarStore) -> BTreeSet<String> {
        vs.variables()
            .into_iter()
            .map(|(k, _)| k)
            .collect::<BTreeSet<_>>()
    }

    #[test]
    fn albert_encoder() {
        let config = albert_config();

        let mut vs = VarStore::new(Device::Cpu);
        let root = vs.root_ext(|_| 0);

        let embeddings = AlbertEmbeddings::new(root.sub("embeddings"), &config).unwrap();
        let encoder = AlbertEncoder::new(root.sub("encoder"), &config).unwrap();

        vs.load(ALBERT_BASE_V2).unwrap();

        // Pierre Vinken [...]
        let pieces = Tensor::of_slice(&[
            5399i64, 9730, 2853, 15, 6784, 122, 315, 15, 129, 1865, 14, 686, 9,
        ])
        .reshape(&[1, 13]);

        let embeddings = embeddings.forward_t(&pieces, false).unwrap();

        let all_hidden_states = encoder.encode(&embeddings, None, false).unwrap();

        let summed_last_hidden =
            all_hidden_states
                .last()
                .unwrap()
                .output()
                .sum_dim_intlist(&[-1], false, Kind::Float);

        let sums: ArrayD<f32> = (&summed_last_hidden).try_into().unwrap();

        assert_abs_diff_eq!(
            sums,
            (array![[
                -19.8755, -22.0879, -22.1255, -22.1221, -22.1466, -21.9200, -21.7490, -22.4941,
                -21.7783, -21.9916, -21.5745, -22.1786, -21.9594
            ]])
            .into_dyn(),
            epsilon = 1e-3
        );
    }

    #[test]
    fn albert_encoder_attention_mask() {
        let config = albert_config();

        let mut vs = VarStore::new(Device::Cpu);
        let root = vs.root_ext(|_| 0);

        let embeddings = AlbertEmbeddings::new(root.sub("embeddings"), &config).unwrap();
        let encoder = AlbertEncoder::new(root.sub("encoder"), &config).unwrap();

        vs.load(ALBERT_BASE_V2).unwrap();

        // Pierre Vinken [...]
        let pieces = Tensor::of_slice(&[
            5399i64, 9730, 2853, 15, 6784, 122, 315, 15, 129, 1865, 14, 686, 9, 0, 0,
        ])
        .reshape(&[1, 15]);

        let attention_mask = seqlen_to_mask(Tensor::of_slice(&[13]), pieces.size()[1]);

        let embeddings = embeddings.forward_t(&pieces, false).unwrap();

        let all_hidden_states = encoder
            .encode(&embeddings, Some(&attention_mask), false)
            .unwrap();

        let summed_last_hidden =
            all_hidden_states
                .last()
                .unwrap()
                .output()
                .sum_dim_intlist(&[-1], false, Kind::Float);

        let sums: ArrayD<f32> = (&summed_last_hidden).try_into().unwrap();

        assert_abs_diff_eq!(
            sums,
            (array![[
                -19.8755, -22.0879, -22.1255, -22.1221, -22.1466, -21.9200, -21.7490, -22.4941,
                -21.7783, -21.9916, -21.5745, -22.1786, -21.9594, -21.7832, -21.7523
            ]])
            .into_dyn(),
            epsilon = 1e-3
        );
    }

    #[test]
    fn albert_encoder_names() {
        // Verify that the encoders's names are correct.
        let config = albert_config();

        let vs = VarStore::new(Device::Cpu);
        let root = vs.root_ext(|_| 0);

        let _encoder = AlbertEncoder::new(root, &config).unwrap();

        let mut encoder_variables = BTreeSet::new();
        let layer_variables = layer_variables();
        for layer_variable in &layer_variables {
            encoder_variables.insert(format!("group_0.inner_group_0.{}", layer_variable));
        }
        encoder_variables.insert("embedding_projection.weight".to_string());
        encoder_variables.insert("embedding_projection.bias".to_string());

        assert_eq!(encoder_variables, varstore_variables(&vs));
    }
}