1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/// Syncmers as defined by Dutta et al. 2022, https://www.biorxiv.org/content/10.1101/2022.01.10.475696v2.full
/// Esp Fig 1b
/// Planning to implement other methods soon
///
/// TODO: Add Iterator impl's
// use std::iter::{FilterMap, Enumerate};
// use std::slice::Windows;
use std::cmp::Ordering;
use pulp::Arch;
// TODO:Denote the reverse complement of x by Embedded Image. For a given order, the canonical form of a k-mer x, denoted by Canonical(x), is the smaller of x and Embedded Image. For example, under the lexicographic order, Canonical(CGGT) = ACCG.
// Canonical(x) = min(x, revcomp(x))
// Copied from ffforf. Really fast thanks to @sarah-ek
/// Complement a sequence, primarily used with revcomp function
pub fn complement(c: &mut u8) {
let val = *c;
let new_val = if val != b'N' {
if val & 2 != 0 {
val ^ 4
} else {
val ^ 21
}
} else {
val
};
*c = new_val;
}
/// Reverse complement a DNA Sequence
pub fn revcomp(sequence: &mut [u8]) {
let arch = Arch::new();
arch.dispatch(|| {
sequence.reverse();
sequence.make_ascii_uppercase();
sequence.iter_mut().for_each(complement);
});
}
/// Test if the reverse complement is smaller, lexicographically, than the original sequence
/// Syncmers should be obtained from the Canonical strand (minimum strand).
/// Use this function for your own tests. It is not used in the Syncmer implementation.
pub fn is_revcomp_min(seq: &[u8]) -> bool {
assert!(!seq.is_empty());
for i in 0..seq.len() {
let mut c = seq[seq.len() - i - 1];
complement(&mut c);
match seq[i].cmp(&c) {
Ordering::Less => return true,
Ordering::Greater => return false,
Ordering::Equal => continue,
}
}
false
}
// Best as determined by criterion benchmarks
// 303.62 MiB/s
/// Find syncmers from &[u8] and return Vec<&[u8]>
///
/// Parameterized syncmers as defined by Dutta et al. 2022, https://www.biorxiv.org/content/10.1101/2022.01.10.475696v2.full
/// Not all implemented yet (downsampling, windows, are not, for example).
///
/// # Arguments
/// k: kmer length
/// s: smer length
/// ts: Target positions, set at beginning or end for open/closed syncmers only.
/// Smallest smer must appear in one of these position of the kmer to be a valid syncmer
///
/// ```rust
/// # use syncmers::find_syncmers;
/// let sequence = b"CCAGTGTTTACGG";
/// let syncmers = find_syncmers(5, 2, &[2], sequence);
/// assert!(syncmers == vec![b"CCAGT", b"TTACG"]);
///
/// // You may also use multiple values for ts
/// let syncmers = find_syncmers(5, 2, &[2, 3], sequence);
/// ```
pub fn find_syncmers<'a, const N: usize>(
k: usize,
s: usize,
ts: &[usize; N],
seq: &'a [u8],
) -> Vec<&'a [u8]> {
assert!(seq.len() > k);
assert!(s < k);
assert!(ts.iter().all(|&t| t <= k - s));
assert!(N < 5);
assert!(N == ts.len());
let syncmer_positions = find_syncmers_pos(k, s, ts, seq);
syncmer_positions.iter().map(|&pos| &seq[pos..pos+k]).collect()
}
// Best as determined by criterion benchmarks
// 340.19 MiB/s
/// Find positions of syncmers
///
/// # Arguments
/// k: kmer length
/// s: smer length
/// ts: Target positions, set at beginning or end for open/closed syncmers only.
/// Smallest smer must appear in one of these position of the kmer to be a valid syncmer
///
/// # Returns
/// Vec<usize> of positions of syncmers (kmers meeting above critera) in the sequence
pub fn find_syncmers_pos<const N: usize>(
k: usize,
s: usize,
ts: &[usize; N],
seq: &[u8],
) -> Vec<usize> {
assert!(seq.len() > k);
assert!(s < k);
assert!(ts.iter().all(|&t| t <= k - s));
assert!(N < 5);
assert!(N == ts.len());
seq.windows(k)
.enumerate()
.filter_map(|(i, kmer)| {
let min_pos = kmer
.windows(s)
.enumerate()
.min_by(|(_, a), (_, b)| a.cmp(b));
if N == 1 && ts[0] == min_pos.unwrap().0 {
Some(i)
} else if N != 1 && ts[0..N].contains(&min_pos.unwrap().0) {
Some(i)
} else {
None
}
})
.collect::<Vec<_>>()
}
/// This is SIGNIFICANTLY slower than find_syncmers function. Prefer to use that instead.
/// t is 0-based (unlike in the paper)
/// NOTE: "By convention, ties are broken by choosing the leftmost position"
/// NOTE: Sequence should be all upper case (or all lower case) BEFORE it gets to this point
/// NOTE: Feed this the canonical strand
/// ```
/// # use syncmers::{revcomp, is_revcomp_min};
/// # let seq = b"ACTGCTGATGCAGTCGCTATCGATCNATNCNGATCATGACTATCGACTACTGVA".to_vec();
/// assert!(seq.iter().all(|x| x.is_ascii_uppercase()));
/// let mut revcmp: Vec<u8>;
/// let mut rev = false;
/// // Get the canonical strand
/// let seq = if is_revcomp_min(&seq) {
/// revcmp = seq.to_vec();
/// revcomp(&mut revcmp);
/// &revcmp
/// } else {
/// &seq
/// };
/// ```
pub struct Syncmers<'syncmer, const N: usize> {
pub k: usize,
pub s: usize,
pub t: &'syncmer [usize; N],
pub seq: &'syncmer [u8],
pos: usize,
}
impl<'syncmer, const N: usize> Syncmers<'syncmer, N> {
pub fn new(k: usize, s: usize, t: &'syncmer [usize; N], seq: &'syncmer [u8]) -> Self {
assert!(s < k);
assert!(t.iter().all(|&x| x <= (k - s)));
Syncmers {
k,
s,
t,
seq,
pos: 0,
}
}
}
impl<'syncmer, const N: usize> Iterator for Syncmers<'syncmer, N> {
type Item = &'syncmer [u8];
fn next(&mut self) -> Option<Self::Item> {
if self.seq.len() - self.pos < self.k {
return None;
}
let kmer = &self.seq[self.pos..self.pos + self.k];
let min_pos = kmer
.windows(self.s)
.enumerate()
.min_by(|(_, a), (_, b)| a.cmp(b));
self.pos += 1;
if N == 1 && self.t[0] == min_pos.unwrap().0 {
Some(kmer)
} else if N != 1 && self.t[0..N].contains(&min_pos.unwrap().0) {
Some(kmer)
} else {
self.next()
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
pub fn test_syncmers_fig1b() {
let sequence = b"CCAGTGTTTACGG";
let syncmer_positions = find_syncmers_pos(5, 2, &[2], sequence);
println!("{:?}", syncmer_positions);
assert!(syncmer_positions == vec![0, 7]);
let sequence = b"CCAGTGTTTACGG";
let syncmers = find_syncmers(5, 2, &[2], sequence);
assert!(syncmers == vec![b"CCAGT", b"TTACG"]);
println!("{:?}", syncmers);
let sequence = b"CCAGTGTTTACGG";
let syncmer_positions = find_syncmers_pos(5, 2, &[2, 3], sequence);
println!("{:?}", syncmer_positions);
assert!(syncmer_positions == vec![0, 6, 7]);
}
}