1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/// Syncmers as defined by Dutta et al. 2022, https://www.biorxiv.org/content/10.1101/2022.01.10.475696v2.full
/// Esp Fig 1b
/// Planning to implement other methods soon
///
/// TODO: Add Iterator impl's
// use std::iter::{FilterMap, Enumerate};
// use std::slice::Windows;
use std::cmp::Ordering;
use pulp::Arch;
// TODO:Denote the reverse complement of x by Embedded Image. For a given order, the canonical form of a k-mer x, denoted by Canonical(x), is the smaller of x and Embedded Image. For example, under the lexicographic order, Canonical(CGGT) = ACCG.
// Canonical(x) = min(x, revcomp(x))
// Copied from ffforf.
pub fn complement(c: &mut u8) {
if *c != b'N' {
if *c & 2 != 0 {
*c ^= 4;
} else {
*c ^= 21;
}
}
}
pub fn revcomp(sequence: &mut [u8]) {
let arch = Arch::new();
arch.dispatch(|| {
sequence.reverse();
sequence.make_ascii_uppercase();
sequence.iter_mut().for_each(complement);
});
}
pub fn is_revcomp_min(seq: &[u8]) -> bool {
assert!(!seq.is_empty());
for i in 0..seq.len() {
let mut c = seq[seq.len() - i - 1];
complement(&mut c);
match seq[i].cmp(&c) {
Ordering::Less => return true,
Ordering::Greater => return false,
Ordering::Equal => continue,
}
}
false
}
// NOTE: "By convention, ties are broken by choosing the leftmost position"
/// 1-parameter syncmer method
/// t is 0-based (unlike in the paper)
/// NOTE: Sequence should be all upper case (or all lower case)
// TODO: Remove?
pub struct Syncmers {
pub k: usize,
pub s: usize,
pub t: usize,
// pub downsample: f32,
}
// type FilterMapIter<'a> = FilterMap<Enumerate<Windows<'a, u8>>, &'static fn ((usize, &'a [u8])) -> Option<usize>>;
/* Docs for getting the canonical strand.
let mut revcmp: Vec<u8>;
let mut rev = false;
// Get the canonical strand
let seq = if is_revcomp_min(seq) {
rev = true;
revcmp = seq.to_vec();
revcomp(&mut revcmp);
&revcmp
} else {
seq
};
*/
impl Syncmers {
pub fn new(k: usize, s: usize, t: usize) -> Self {
assert!(s < k);
assert!(t < k);
Syncmers { k, s, t }
}
// TODO: Find a way to return just the iter (FilterMap Iter and it's long return type)
pub fn find_all(&self, seq: &[u8]) -> Vec<usize> {
assert!(seq.len() >= self.k);
seq.windows(self.k)
.enumerate()
.filter_map(|(i, kmer)| {
let min_pos = kmer
.windows(self.s)
.enumerate()
.min_by(|(_, a), (_, b)| a.cmp(b));
if min_pos.unwrap().0 == self.t {
Some(i)
} else {
None
}
})
.collect::<Vec<_>>()
}
/*
type FilterMapIter<'a> = FilterMap<Enumerate<Windows<'a, u8>>, &'static fn ((usize, &'a [u8])) -> Option<usize>>;
pub fn find<'a>(&self, seq: &'a [u8]) -> FilterMapIter<'a> {
assert!(seq.len() >= self.k);
seq.windows(self.k)
.enumerate()
.filter_map(|(i, kmer)| {
if let Some(min_pos) = kmer
.windows(self.s)
.enumerate()
.min_by(|(_, a), (_, b)| a.cmp(b)) {
if min_pos == self.t {
Some(i)
} else {
None
}
} else {
None
}
})
} */
}
impl Iterator for Syncmers {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
unimplemented!()
}
}
/// Multi-parameter syncmer method
/// t is 0-based (unlike in the paper)
pub struct ParameterizedSyncmers<'a> {
pub k: usize,
pub s: usize,
pub t: &'a [usize],
}
impl<'a> ParameterizedSyncmers<'a> {
pub fn new(k: usize, s: usize, t: &'a [usize]) -> Self {
assert!(s < k);
assert!(t.iter().all(|&t| t < k));
ParameterizedSyncmers { k, s, t }
}
pub fn find_all(&self, seq: &[u8]) -> Vec<usize> {
seq.windows(self.k)
.enumerate()
.filter_map(|(i, kmer)| {
let min_pos = kmer
.windows(self.s)
.enumerate()
.min_by(|(_, a), (_, b)| a.cmp(b));
if self.t.contains(&min_pos.unwrap().0) {
Some(i)
} else {
None
}
})
.collect::<Vec<_>>()
}
}
mod test {
use super::*;
#[test]
pub fn test_syncmers_fig1b() {
let sequence = b"CCAGTGTTTACGG";
let syncmers = Syncmers::new(5, 2, 2);
let syncmer_positions = syncmers.find_all(sequence);
println!("{:?}", syncmer_positions);
assert!(syncmer_positions == vec![0, 7]);
let ts: [usize; 1] = [2];
let psyncmers = ParameterizedSyncmers::new(5, 2, &ts);
let syncmer_positions = psyncmers.find_all(sequence);
assert!(syncmer_positions == vec![0, 7]);
}
}