1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/// Syncmers as defined by Dutta et al. 2022, https://www.biorxiv.org/content/10.1101/2022.01.10.475696v2.full
/// Esp Fig 1b
/// Planning to implement other methods soon
///
/// TODO: Add Iterator impl's

// use std::iter::{FilterMap, Enumerate};
// use std::slice::Windows;
use std::cmp::Ordering;

use pulp::Arch;

// TODO:Denote the reverse complement of x by Embedded Image. For a given order, the canonical form of a k-mer x, denoted by Canonical(x), is the smaller of x and Embedded Image. For example, under the lexicographic order, Canonical(CGGT) = ACCG.
// Canonical(x) = min(x, revcomp(x))

// Copied from ffforf.
pub fn complement(c: &mut u8) {
    if *c != b'N' {
        if *c & 2 != 0 {
            *c ^= 4;
        } else {
            *c ^= 21;
        }
    }
}

pub fn revcomp(sequence: &mut [u8]) {
    let arch = Arch::new();
    arch.dispatch(|| {
        sequence.reverse();
        sequence.make_ascii_uppercase();
        sequence.iter_mut().for_each(complement);
    });
}

pub fn is_revcomp_min(seq: &[u8]) -> bool {
    assert!(!seq.is_empty());
    for i in 0..seq.len() {
        let mut c = seq[seq.len() - i - 1];
        complement(&mut c);
        match seq[i].cmp(&c) {
            Ordering::Less => return true,
            Ordering::Greater => return false,
            Ordering::Equal => continue,
        }
    }

    false
}

// NOTE: "By convention, ties are broken by choosing the leftmost position"

/// 1-parameter syncmer method
/// t is 0-based (unlike in the paper)
/// NOTE: Sequence should be all upper case (or all lower case)
// TODO: Remove?
pub struct Syncmers {
    pub k: usize,
    pub s: usize,
    pub t: usize,
    // pub downsample: f32,
}

// type FilterMapIter<'a> = FilterMap<Enumerate<Windows<'a, u8>>, &'static fn ((usize, &'a [u8])) -> Option<usize>>;

/* Docs for getting the canonical strand.
let mut revcmp: Vec<u8>;
let mut rev = false;

// Get the canonical strand
let seq = if is_revcomp_min(seq) {
    rev = true;

    revcmp = seq.to_vec();
    revcomp(&mut revcmp);
    &revcmp
} else {
    seq
};

*/
impl Syncmers {
    pub fn new(k: usize, s: usize, t: usize) -> Self {

        assert!(s < k);
        assert!(t < k);
        Syncmers { k, s, t }
    }

    // TODO: Find a way to return just the iter (FilterMap Iter and it's long return type)

    pub fn find_all(&self, seq: &[u8]) -> Vec<usize> {
        assert!(seq.len() >= self.k);

       seq.windows(self.k)
            .enumerate()
            .filter_map(|(i, kmer)| {
                let min_pos = kmer
                    .windows(self.s)
                    .enumerate()
                    .min_by(|(_, a), (_, b)| a.cmp(b));

                if min_pos.unwrap().0 == self.t {
                    Some(i)
                } else {
                    None
                }
            })
            .collect::<Vec<_>>()
    }

    /*
    type FilterMapIter<'a> = FilterMap<Enumerate<Windows<'a, u8>>, &'static fn ((usize, &'a [u8])) -> Option<usize>>;

    pub fn find<'a>(&self, seq: &'a [u8]) -> FilterMapIter<'a> {
        assert!(seq.len() >= self.k);
        seq.windows(self.k)
            .enumerate()
            .filter_map(|(i, kmer)| {
                if let Some(min_pos) = kmer
                    .windows(self.s)
                    .enumerate()
                    .min_by(|(_, a), (_, b)| a.cmp(b)) {

                        if min_pos == self.t {
                            Some(i)
                        } else {
                            None        
                        }
                    } else {
                        None
                    }
            }) 

    } */
}

impl Iterator for Syncmers {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        unimplemented!()
    }
}

/// Multi-parameter syncmer method
/// t is 0-based (unlike in the paper)
pub struct ParameterizedSyncmers<'a> {
    pub k: usize,
    pub s: usize,
    pub t: &'a [usize],
}

impl<'a> ParameterizedSyncmers<'a> {
    pub fn new(k: usize, s: usize, t: &'a [usize]) -> Self {
        assert!(s < k);
        assert!(t.iter().all(|&t| t < k));
        ParameterizedSyncmers { k, s, t }
    }

    pub fn find_all(&self, seq: &[u8]) -> Vec<usize> {
        seq.windows(self.k)
            .enumerate()
            .filter_map(|(i, kmer)| {
                let min_pos = kmer
                    .windows(self.s)
                    .enumerate()
                    .min_by(|(_, a), (_, b)| a.cmp(b));

                if self.t.contains(&min_pos.unwrap().0) {
                    Some(i)
                } else {
                    None
                }
            })
            .collect::<Vec<_>>()
    }
}

mod test {
    use super::*;

    #[test]
    pub fn test_syncmers_fig1b() {
        let sequence = b"CCAGTGTTTACGG";
        let syncmers = Syncmers::new(5, 2, 2);
        let syncmer_positions = syncmers.find_all(sequence);
        println!("{:?}", syncmer_positions);
        assert!(syncmer_positions == vec![0, 7]);

        let ts: [usize; 1] = [2];

        let psyncmers = ParameterizedSyncmers::new(5, 2, &ts);
        let syncmer_positions = psyncmers.find_all(sequence);
        assert!(syncmer_positions == vec![0, 7]);
    }
}