swiftide_indexing/transformers/
sparse_embed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
//! Generic embedding transformer
use std::{collections::VecDeque, sync::Arc};

use anyhow::bail;
use async_trait::async_trait;
use swiftide_core::{
    indexing::{IndexingStream, Node},
    BatchableTransformer, SparseEmbeddingModel, WithBatchIndexingDefaults, WithIndexingDefaults,
};

/// A transformer that can generate embeddings for an `Node`
///
/// This file defines the `SparseEmbed` struct and its implementation of the `BatchableTransformer` trait.
#[derive(Clone)]
pub struct SparseEmbed {
    embed_model: Arc<dyn SparseEmbeddingModel>,
    concurrency: Option<usize>,
    batch_size: Option<usize>,
}

impl std::fmt::Debug for SparseEmbed {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("SparseEmbed")
            .field("concurrency", &self.concurrency)
            .finish()
    }
}

impl SparseEmbed {
    /// Creates a new instance of the `SparseEmbed` transformer.
    ///
    /// # Parameters
    ///
    /// * `model` - An embedding model that implements the `SparseEmbeddingModel` trait.
    ///
    /// # Returns
    ///
    /// A new instance of `SparseEmbed`.
    pub fn new(model: impl SparseEmbeddingModel + 'static) -> Self {
        Self {
            embed_model: Arc::new(model),
            concurrency: None,
            batch_size: None,
        }
    }

    #[must_use]
    pub fn with_concurrency(mut self, concurrency: usize) -> Self {
        self.concurrency = Some(concurrency);
        self
    }

    /// Sets the batch size for the transformer.
    /// If the batch size is not set, the transformer will use the default batch size set by the pipeline
    /// # Parameters
    ///
    /// * `batch_size` - The batch size to use for the transformer.
    ///
    /// # Returns
    ///
    /// A new instance of `Embed`.
    #[must_use]
    pub fn with_batch_size(mut self, batch_size: usize) -> Self {
        self.batch_size = Some(batch_size);
        self
    }
}

impl WithBatchIndexingDefaults for SparseEmbed {}
impl WithIndexingDefaults for SparseEmbed {}

#[async_trait]
impl BatchableTransformer for SparseEmbed {
    /// Transforms a batch of `Node` objects by generating embeddings for them.
    ///
    /// # Parameters
    ///
    /// * `nodes` - A vector of `Node` objects to be transformed.
    ///
    /// # Returns
    ///
    /// An `IndexingStream` containing the transformed `Node` objects with their embeddings.
    ///
    /// # Errors
    ///
    /// If the embedding process fails, the function returns a stream with the error.
    #[tracing::instrument(skip_all, name = "transformers.embed")]
    async fn batch_transform(&self, mut nodes: Vec<Node>) -> IndexingStream {
        // TODO: We should drop chunks that go over the token limit of the SparseEmbedModel

        // EmbeddedFields grouped by node stored in order of processed nodes.
        let mut embeddings_keys_groups = VecDeque::with_capacity(nodes.len());
        // SparseEmbeddable data of every node stored in order of processed nodes.
        let embeddables_data = nodes
            .iter_mut()
            .fold(Vec::new(), |mut embeddables_data, node| {
                let embeddables = node.as_embeddables();
                let mut embeddables_keys = Vec::with_capacity(embeddables.len());
                for (embeddable_key, embeddable_data) in embeddables {
                    embeddables_keys.push(embeddable_key);
                    embeddables_data.push(embeddable_data);
                }
                embeddings_keys_groups.push_back(embeddables_keys);
                embeddables_data
            });

        // SparseEmbeddings vectors of every node stored in order of processed nodes.
        let mut embeddings = match self.embed_model.sparse_embed(embeddables_data).await {
            Ok(embeddngs) => VecDeque::from(embeddngs),
            Err(err) => return err.into(),
        };

        // Iterator of nodes with embeddings vectors map.
        let nodes_iter = nodes.into_iter().map(move |mut node| {
            let Some(embedding_keys) = embeddings_keys_groups.pop_front() else {
                bail!("Missing embedding data");
            };
            node.sparse_vectors = embedding_keys
                .into_iter()
                .map(|embedded_field| {
                    embeddings
                        .pop_front()
                        .map(|embedding| (embedded_field, embedding))
                })
                .collect();
            Ok(node)
        });

        IndexingStream::iter(nodes_iter)
    }

    fn concurrency(&self) -> Option<usize> {
        self.concurrency
    }

    fn batch_size(&self) -> Option<usize> {
        self.batch_size
    }
}

#[cfg(test)]
mod tests {
    use swiftide_core::indexing::{EmbedMode, EmbeddedField, Metadata, Node};
    use swiftide_core::{
        BatchableTransformer, MockSparseEmbeddingModel, SparseEmbedding, SparseEmbeddings,
    };

    use super::SparseEmbed;

    use futures_util::StreamExt;
    use mockall::predicate::*;
    use test_case::test_case;

    #[derive(Clone)]
    struct TestData<'a> {
        pub embed_mode: EmbedMode,
        pub chunk: &'a str,
        pub metadata: Metadata,
        pub expected_embedables: Vec<&'a str>,
        pub expected_vectors: Vec<(EmbeddedField, Vec<f32>)>,
    }

    #[test_case(vec![
        TestData {
            embed_mode: EmbedMode::SingleWithMetadata,
            chunk: "chunk_1",
            metadata: Metadata::from([("meta_1", "prompt_1")]),
            expected_embedables: vec!["meta_1: prompt_1\nchunk_1"],
            expected_vectors: vec![(EmbeddedField::Combined, vec![1f32])]
        },
        TestData {
            embed_mode: EmbedMode::SingleWithMetadata,
            chunk: "chunk_2",
            metadata: Metadata::from([("meta_2", "prompt_2")]),
            expected_embedables: vec!["meta_2: prompt_2\nchunk_2"],
            expected_vectors: vec![(EmbeddedField::Combined, vec![2f32])]
        }
    ]; "Multiple nodes EmbedMode::SingleWithMetadata with metadata.")]
    #[test_case(vec![
        TestData {
            embed_mode: EmbedMode::PerField,
            chunk: "chunk_1",
            metadata: Metadata::from([("meta_1", "prompt 1")]),
            expected_embedables: vec!["chunk_1", "prompt 1"],
            expected_vectors: vec![
                (EmbeddedField::Chunk, vec![10f32]),
                (EmbeddedField::Metadata("meta_1".into()), vec![11f32])
            ]
        },
        TestData {
            embed_mode: EmbedMode::PerField,
            chunk: "chunk_2",
            metadata: Metadata::from([("meta_2", "prompt 2")]),
            expected_embedables: vec!["chunk_2", "prompt 2"],
            expected_vectors: vec![
                (EmbeddedField::Chunk, vec![20f32]),
                (EmbeddedField::Metadata("meta_2".into()), vec![21f32])
            ]
        }
    ]; "Multiple nodes EmbedMode::PerField with metadata.")]
    #[test_case(vec![
        TestData {
            embed_mode: EmbedMode::Both,
            chunk: "chunk_1",
            metadata: Metadata::from([("meta_1", "prompt 1")]),
            expected_embedables: vec!["meta_1: prompt 1\nchunk_1", "chunk_1", "prompt 1"],
            expected_vectors: vec![
                (EmbeddedField::Combined, vec![10f32]),
                (EmbeddedField::Chunk, vec![11f32]),
                (EmbeddedField::Metadata("meta_1".into()), vec![12f32])
            ]
        },
        TestData {
            embed_mode: EmbedMode::Both,
            chunk: "chunk_2",
            metadata: Metadata::from([("meta_2", "prompt 2")]),
            expected_embedables: vec!["meta_2: prompt 2\nchunk_2", "chunk_2", "prompt 2"],
            expected_vectors: vec![
                (EmbeddedField::Combined, vec![20f32]),
                (EmbeddedField::Chunk, vec![21f32]),
                (EmbeddedField::Metadata("meta_2".into()), vec![22f32])
            ]
        }
    ]; "Multiple nodes EmbedMode::Both with metadata.")]
    #[test_case(vec![
        TestData {
            embed_mode: EmbedMode::Both,
            chunk: "chunk_1",
            metadata: Metadata::from([("meta_10", "prompt 10"), ("meta_11", "prompt 11"), ("meta_12", "prompt 12")]),
            expected_embedables: vec!["meta_10: prompt 10\nmeta_11: prompt 11\nmeta_12: prompt 12\nchunk_1", "chunk_1", "prompt 10", "prompt 11", "prompt 12"],
            expected_vectors: vec![
                (EmbeddedField::Combined, vec![10f32]),
                (EmbeddedField::Chunk, vec![11f32]),
                (EmbeddedField::Metadata("meta_10".into()), vec![12f32]),
                (EmbeddedField::Metadata("meta_11".into()), vec![13f32]),
                (EmbeddedField::Metadata("meta_12".into()), vec![14f32]),
            ]
        },
        TestData {
            embed_mode: EmbedMode::Both,
            chunk: "chunk_2",
            metadata: Metadata::from([("meta_20", "prompt 20"), ("meta_21", "prompt 21"), ("meta_22", "prompt 22")]),
            expected_embedables: vec!["meta_20: prompt 20\nmeta_21: prompt 21\nmeta_22: prompt 22\nchunk_2", "chunk_2", "prompt 20", "prompt 21", "prompt 22"],
            expected_vectors: vec![
                (EmbeddedField::Combined, vec![20f32]),
                (EmbeddedField::Chunk, vec![21f32]),
                (EmbeddedField::Metadata("meta_20".into()), vec![22f32]),
                (EmbeddedField::Metadata("meta_21".into()), vec![23f32]),
                (EmbeddedField::Metadata("meta_22".into()), vec![24f32])
            ]
        }
    ]; "Multiple nodes EmbedMode::Both with multiple metadata.")]
    #[test_case(vec![]; "No ingestion nodes")]
    #[tokio::test]
    async fn batch_transform(test_data: Vec<TestData<'_>>) {
        let test_nodes: Vec<Node> = test_data
            .iter()
            .map(|data| {
                Node::builder()
                    .chunk(data.chunk)
                    .metadata(data.metadata.clone())
                    .embed_mode(data.embed_mode)
                    .build()
                    .unwrap()
            })
            .collect();

        let expected_nodes: Vec<Node> = test_nodes
            .clone()
            .into_iter()
            .zip(test_data.iter())
            .map(|(mut expected_node, test_data)| {
                expected_node.sparse_vectors = Some(
                    test_data
                        .expected_vectors
                        .iter()
                        .cloned()
                        .map(|d| {
                            (
                                d.0,
                                SparseEmbedding {
                                    indices: vec![0],
                                    values: d.1,
                                },
                            )
                        })
                        .collect(),
                );
                expected_node
            })
            .collect();

        let expected_embeddables_batch = test_data
            .clone()
            .iter()
            .flat_map(|d| &d.expected_embedables)
            .map(ToString::to_string)
            .collect::<Vec<String>>();

        let expected_vectors_batch: SparseEmbeddings = test_data
            .clone()
            .iter()
            .flat_map(|d| {
                d.expected_vectors
                    .iter()
                    .map(|(_, v)| v)
                    .cloned()
                    .map(|v| SparseEmbedding {
                        indices: vec![0],
                        values: v,
                    })
            })
            .collect();

        let mut model_mock = MockSparseEmbeddingModel::new();
        model_mock
            .expect_sparse_embed()
            .withf(move |embeddables| expected_embeddables_batch.eq(embeddables))
            .times(1)
            .returning_st(move |_| Ok(expected_vectors_batch.clone()));

        let embed = SparseEmbed::new(model_mock);

        let mut stream = embed.batch_transform(test_nodes).await;

        for expected_node in expected_nodes {
            let ingested_node = stream
                .next()
                .await
                .expect("IngestionStream has same length as expected_nodes")
                .expect("Is OK");

            debug_assert_eq!(ingested_node, expected_node);
        }
    }

    #[tokio::test]
    async fn test_returns_error_properly_if_sparse_embed_fails() {
        let test_nodes = vec![Node::new("chunk")];
        let mut model_mock = MockSparseEmbeddingModel::new();
        model_mock
            .expect_sparse_embed()
            .times(1)
            .returning(|_| Err(anyhow::anyhow!("error")));
        let embed = SparseEmbed::new(model_mock);
        let mut stream = embed.batch_transform(test_nodes).await;
        let error = stream
            .next()
            .await
            .expect("IngestionStream has same length as expected_nodes")
            .expect_err("Is Err");

        assert_eq!(error.to_string(), "error");
    }
}