1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
use crate::arch::{self, byte_ptr, simd_ptr, Vector};
#[allow(unused_imports)]
use crate::arch::is_aligned;
#[allow(unused_imports)]
use mirai_annotations::{
checked_precondition, checked_postcondition,
precondition, postcondition
};
#[contracts::requires(x >= 0)]
#[contracts::ensures(x as usize == ret)]
#[inline(always)]
unsafe fn remove_sign(x: isize) -> usize {
x as usize
}
#[contracts::requires(l >= r)]
#[inline(always)]
unsafe fn offset_from(l: *const u8, r: *const u8) -> isize {
let ret = l.offset_from(r);
// `l` being greater than 'r' is a precondition, therefore the offset will always be positive.
contract!(assumed_postcondition!(ret >= 0));
ret
}
#[contracts::requires(l >= r)]
#[contracts::ensures(ret == remove_sign(offset_from(l, r)))]
#[inline(always)]
unsafe fn distance(l: *const u8, r: *const u8) -> usize {
remove_sign(offset_from(l, r))
}
#[contracts::requires(dist <= arch::WIDTH)]
#[contracts::ensures(
dist == distance(byte_ptr(_end), cur) -> incr_ptr(simd_ptr(ret)) == _end,
"If `dist` is the byte offset of `_end` to `cur` then incr_ptr(simd_ptr(ret)) equates to \
`_end`"
)]
#[inline(always)]
unsafe fn make_space(cur: *const u8, dist: usize, _end: *const arch::Ptr) -> *const u8 {
cur.sub(arch::WIDTH - dist)
}
#[contracts::requires(
end >= cur,
"The `end` ptr must be greater than or equal to `cur`"
)]
#[contracts::requires(
cur >= decr_ptr(end) && distance(byte_ptr(end), byte_ptr(cur)) <= arch::WIDTH,
"The distance between `end` and `cur` must be less than arch::WIDTH"
)]
#[contracts::ensures(
distance(byte_ptr(end), byte_ptr(cur)) != 0 -> incr_ptr(ret.unwrap()) == end,
"If there is distance between `end` and `cur` this will always return Some"
)]
#[contracts::ensures(
ret.is_some() -> incr_ptr(ret.unwrap()) == end,
"If Some is returned the wrapped ptr will always have a distance of arch::WIDTH to `end` \
(no assurance of alignment)"
)]
#[inline(always)]
unsafe fn adjust_ptr(cur: *const arch::Ptr, end: *const arch::Ptr) -> Option<*const arch::Ptr> {
match distance(byte_ptr(end), byte_ptr(cur)) {
0 => None,
dist => {
// The first precondition states that the distance between byte_ptr(end) and
// byte_ptr(cur) must be less than or equal to arch::WIDTH.
contract!(checked_assume!(dist <= arch::WIDTH));
Some(simd_ptr(make_space(byte_ptr(cur), dist, end)))
}
}
}
#[contracts::ensures(ptr == decr_ptr(ret))]
#[contracts::ensures(ptr.add(arch::STEP) == ret)]
#[contracts::ensures(byte_ptr(decr_ptr(ret)) == byte_ptr(ptr))]
#[contracts::ensures(is_aligned(ptr) -> is_aligned(ret))]
#[inline(always)]
unsafe fn incr_ptr(ptr: *const arch::Ptr) -> *const arch::Ptr {
ptr.add(arch::STEP)
}
#[contracts::ensures(incr_ptr(ret) == ptr)]
#[contracts::ensures(is_aligned(ptr) -> is_aligned(ret))]
#[inline(always)]
unsafe fn decr_ptr(ptr: *const arch::Ptr) -> *const arch::Ptr {
ptr.sub(arch::STEP)
}
#[contracts::ensures(
ptr.align_offset(arch::WIDTH) != 0
-> ret.cast::<u8>().offset_from(ptr) as usize == ptr.align_offset(arch::WIDTH)
)]
#[contracts::ensures(
ptr.align_offset(arch::WIDTH) == 0 -> ret == incr_ptr(simd_ptr(ptr))
)]
#[inline(always)]
unsafe fn align_ptr_or_incr(ptr: *const u8) -> *const arch::Ptr {
let offset = ptr.align_offset(arch::WIDTH);
if offset == 0 {
// When the pointer is already aligned, increment it by `arch::STEP`
incr_ptr(simd_ptr(ptr))
} else {
// When the pointer is not aligned, adjust it to the next alignment boundary
simd_ptr(ptr.add(offset))
}
}
#[contracts::ensures(is_aligned(cur) -> is_aligned(cur))]
#[contracts::ensures(incr_ptr(cur) <= end -> true)]
#[inline(always)]
unsafe fn can_proceed(cur: *const arch::Ptr, end: *const arch::Ptr) -> bool {
cur <= decr_ptr(end)
}
#[contracts::ensures(x == ret as u32)]
#[contracts::ensures(ret == x as usize)]
#[inline(always)]
fn cast_usize(x: u32) -> usize {
x as usize
}
#[contracts::ensures(ret -> len < arch::WIDTH as u32)]
#[contracts::ensures(!ret -> len >= arch::WIDTH as u32)]
#[inline(always)]
fn valid_len(len: u32) -> bool {
len < arch::WIDTH as u32
}
/// Post-condition: As long as the preconditions are respected the returned value will always be
/// less than `data.len()`
#[contracts::requires(data.len() >= arch::WIDTH)]
#[contracts::requires(
valid_len(len),
"The length must be below the SIMD register width, it being outside of this range denotes that \
find operation did not succeed."
)]
#[contracts::requires(
cur >= data.as_ptr(),
"The `cur` pointer must not have moved backwards beyond the start of `data`"
)]
#[contracts::requires(
cast_usize(len) < usize::MAX - distance(cur, data.as_ptr()),
"The length + the distance from `cur` to `data` must not be able to overflow."
)]
#[contracts::requires(
distance(cur, data.as_ptr()) < data.len() - arch::WIDTH,
"The distance between `cur` and `data` must be less than the data's length subtracted by the \
SIMD register width."
)]
#[inline(always)]
unsafe fn final_length(len: u32, cur: *const u8, data: &[u8]) -> usize {
// Let:
// - `len` be a 32-bit unsigned integer,
// - `cur` be a pointer to a byte within `data`,
// - `data` be a slice of bytes.
//
// Preconditions:
// (P1) `data.len() >= arch::WIDTH`: Ensures sufficient length of `data` to safely perform SIMD
// operations.
// (P2) `valid_len(len)`: Requires `len` to be less than the width of a SIMD register, signaling
// a successful find operation.
// (P3) `cur >= data.as_ptr()`: Guarantees that the pointer `cur` does not retrogress beyond the
// starting point of `data`.
// (P4) `cast_usize(len) + distance(cur, data.as_ptr()) < usize::MAX`: Prevents integer overflow
// by ensuring the sum of `len` and the byte offset from `cur` to `data` start is within
// usize limits.
// (P5) `distance(cur, data.as_ptr()) < data.len() - arch::WIDTH`: Confirms that the offset from
// `cur` to `data` plus the SIMD register width remains within the bounds of `data`.
//
// Postconditions:
// (Q1) `ret < data.len()`: Asserts that the computed result `ret` remains strictly less than
// the total length of `data`, preventing out-of-bounds indexing in further operations.
//
// Argument for Q1:
// Given P(2) and P(5), we have:
// - P(2) asserts that `len` is strictly less than `arch::WIDTH`.
// - P(5) asserts that the offset from `cur` to `data` plus `arch::WIDTH` is less than
// `data.len()`.
// Therefore, the sum of `len` and the distance from `cur` to `data` is guaranteed to be less
// than `data.len()`, as:
// `len` + distance <= `arch::WIDTH` + (data.len() - `arch::WIDTH`) = data.len().
//
// This function utilizes `wrapping_add` for adding `len` to the byte offset, under the
// assumption derived from the preconditions that no inappropriate overflow will occur.
let ret = cast_usize(len).wrapping_add(distance(cur, data.as_ptr()));
// See argument for Q1 in function commentary.
contract!(assumed_postcondition!(ret < data.len()));
ret
}
macro_rules! valid_len_then {
($len:ident, $do:expr $(, $otherwise:expr)?) => {
if valid_len($len) {
// Re-emphasize postcondition of `valid_len`
contract!(debug_checked_assume!(valid_len($len)));
$do
} $( else {
$otherwise
})?
};
}
#[contracts::requires(data.len() >= arch::WIDTH)]
#[contracts::ensures(ret.is_some() -> ret.unwrap() < data.len())]
#[inline]
pub unsafe fn search<F: Fn(Vector) -> Vector>(data: &[u8], cond: F) -> Option<usize> {
let len = arch::MoveMask::new(cond(arch::load_unchecked(simd_ptr(data.as_ptr()))))
.trailing_zeros();
if valid_len(len) { return Some(len as usize); }
// We have already checked the first arch::WIDTH of data. Rather than just continuing we align
// the current pointer. If it was unaligned we will search an overlapping space as the initial
// check.
let mut cur = align_ptr_or_incr(data.as_ptr());
let end = simd_ptr(data.as_ptr().add(data.len()));
while can_proceed(cur, end) {
contract!(debug_checked_verify!(is_aligned(cur)));
// We aligned `cur` at `align_ptr_or_incr`, according to the postconditions of
// `can_proceed` and `incr_ptr` we will remain aligned until `can_proceed` yields false.
let len = arch::MoveMask::new(cond(arch::load_aligned(cur))).trailing_zeros();
valid_len_then!(
len, return Some(final_length(len, byte_ptr(cur), data))
);
cur = incr_ptr(cur);
}
if let Some(ptr) = adjust_ptr(cur, end) {
// According to the postconditions of `adjust_ptr` when the result is `Some` the wrapped
// pointer is exactly `arch::WIDTH` from `end`. We can make no assumption regarding the
// alignment of the pointer, use an unaligned load.
let len = arch::MoveMask::new(cond(arch::load_unchecked(ptr))).trailing_zeros();
valid_len_then!(
len,
Some(final_length(len, byte_ptr(ptr), data)),
None
)
} else {
None
}
}
#[contracts::requires(data.len() >= arch::WIDTH)]
#[inline(always)]
pub unsafe fn for_all_ensure_ct(data: &[u8], cond: impl Fn(Vector) -> Vector, res: &mut bool) {
*res &= crate::ensure!(super::load_unchecked(simd_ptr(data.as_ptr())), cond);
// Align the pointer if it is not already, if it was already aligned it `incr_ptr`'s as we have
// already checked this space. If the pointer was unaligned we will search over the same space
// again.
let mut cur = align_ptr_or_incr(data.as_ptr());
let end = simd_ptr(data.as_ptr().add(data.len()));
while can_proceed(cur, end) {
contract!(debug_checked_verify!(is_aligned(cur)));
// Outside the loop we ensured `cur` is aligned at this point. According to the post
// condition of `incr_ptr` if the pointer being incremented was initially aligned to the
// register width, it will retain this alignment. Therefore, we know it is safe to do an
// aligned load. `cur_proceed` also ensures that we are at least arch::WIDTH from `end`.
*res &= crate::ensure!(arch::load_aligned(cur), cond);
cur = incr_ptr(cur);
}
// There was less than arch::WIDTH from `cur` to `end`, we do not know that we have reached end
// of input. If we have not reached the end, adjust the pointer so that the distance from `cur`
// to `end` is exactly arch::WIDTH
if let Some(ptr) = adjust_ptr(cur, end) {
// We know the distance from `cur` to `end` is exactly arch::WIDTH due to `adjust_ptr`'s
// postcondition. We have no assurance of alignment, so use an unaligned load.
*res &= crate::ensure!(arch::load_unchecked(ptr), cond);
}
}
#[contracts::requires(data.len() >= arch::WIDTH)]
#[inline(always)]
pub unsafe fn for_all_ensure(data: &[u8], cond: impl Fn(Vector) -> Vector) -> bool {
if !crate::ensure!(arch::load_unchecked(simd_ptr(data.as_ptr())), cond) {
return false;
}
// Align the pointer if it is not already, if it was already aligned it `incr_ptr`'s as we have
// already checked this space. If the pointer was unaligned we will search over the same space
// again.
let mut cur = align_ptr_or_incr(data.as_ptr());
let end = simd_ptr(data.as_ptr().add(data.len()));
while can_proceed(cur, end) {
contract!(debug_checked_verify!(is_aligned(cur)));
// Outside the loop we ensured `cur` is aligned at this point. According to the post
// condition of `incr_ptr` if the pointer being incremented was initially aligned to the
// register width, it will retain this alignment. Therefore, we know it is safe to do an
// aligned load. `cur_proceed` also ensures that we are at least arch::WIDTH from `end`.
if !crate::ensure!(arch::load_aligned(cur), cond) {
return false;
}
cur = incr_ptr(cur);
}
// There was less than arch::WIDTH from `cur` to `end`, we do not know that we have reached end
// of input. If we have not reached the end, adjust the pointer so that the distance from `cur`
// to `end` is exactly arch::WIDTH
if let Some(ptr) = adjust_ptr(cur, end) {
// We know the distance from `cur` to `end` is exactly arch::WIDTH due to `adjust_ptr`'s
// postcondition. We have no assurance of alignment, so use an unaligned load.
crate::ensure!(arch::load_unchecked(ptr), cond)
} else {
true
}
}