1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
use sway_error::handler::{ErrorEmitted, Handler};
use sway_types::{Span, Spanned};
use crate::{
decl_engine::*,
engine_threading::*,
language::{ty, CallPath},
semantic_analysis::TypeCheckContext,
type_system::priv_prelude::*,
Ident,
};
/// A `TypeBinding` is the result of using turbofish to bind types to
/// generic parameters.
///
/// For example:
///
/// ```ignore
/// let data = Data::<bool> {
/// value: true
/// };
/// ```
///
/// Would produce the type binding (in pseudocode):
///
/// ```ignore
/// TypeBinding {
/// inner: CallPath(["Data"]),
/// type_arguments: [bool]
/// }
/// ```
///
/// ---
///
/// Further:
///
/// ```ignore
/// struct Data<T> {
/// value: T
/// }
///
/// let data1 = Data {
/// value: true
/// };
///
/// let data2 = Data::<bool> {
/// value: true
/// };
///
/// let data3: Data<bool> = Data {
/// value: true
/// };
///
/// let data4: Data<bool> = Data::<bool> {
/// value: true
/// };
/// ```
///
/// Each of these 4 examples generates a valid struct expression for `Data`
/// and passes type checking. But each does so in a unique way:
/// - `data1` has no type ascription and no type arguments in the `TypeBinding`,
/// so both are inferred from the value passed to `value`
/// - `data2` has no type ascription but does have type arguments in the
/// `TypeBinding`, so the type ascription and type of the value passed to
/// `value` are both unified to the `TypeBinding`
/// - `data3` has a type ascription but no type arguments in the `TypeBinding`,
/// so the type arguments in the `TypeBinding` and the type of the value
/// passed to `value` are both unified to the type ascription
/// - `data4` has a type ascription and has type arguments in the `TypeBinding`,
/// so, with the type from the value passed to `value`, all three are unified
/// together
#[derive(Debug, Clone)]
pub struct TypeBinding<T> {
pub inner: T,
pub type_arguments: TypeArgs,
pub span: Span,
}
/// A [TypeArgs] contains a `Vec<TypeArgument>` either in the variant `Regular`
/// or in the variant `Prefix`.
///
/// `Regular` variant indicates the type arguments are located after the suffix.
/// `Prefix` variant indicates the type arguments are located between the last
/// prefix and the suffix.
///
/// In the case of an enum we can have either the type parameters in the `Regular`
/// variant, case of:
/// ```ignore
/// let z = Option::Some::<u32>(10);
/// ```
/// Or the enum can have the type parameters in the `Prefix` variant, case of:
/// ```ignore
/// let z = Option::<u32>::Some(10);
/// ```
/// So we can have type parameters in the `Prefix` or `Regular` variant but not
/// in both.
#[derive(Debug, Clone)]
pub enum TypeArgs {
/// `Regular` variant indicates the type arguments are located after the suffix.
Regular(Vec<TypeArgument>),
/// `Prefix` variant indicates the type arguments are located between the last
/// prefix and the suffix.
Prefix(Vec<TypeArgument>),
}
impl TypeArgs {
pub fn to_vec(&self) -> Vec<TypeArgument> {
match self {
TypeArgs::Regular(vec) => vec.to_vec(),
TypeArgs::Prefix(vec) => vec.to_vec(),
}
}
pub(crate) fn to_vec_mut(&mut self) -> &mut Vec<TypeArgument> {
match self {
TypeArgs::Regular(vec) => vec,
TypeArgs::Prefix(vec) => vec,
}
}
}
impl Spanned for TypeArgs {
fn span(&self) -> Span {
Span::join_all(self.to_vec().iter().map(|t| t.span()))
}
}
impl PartialEqWithEngines for TypeArgs {
fn eq(&self, other: &Self, engines: &Engines) -> bool {
match (self, other) {
(TypeArgs::Regular(vec1), TypeArgs::Regular(vec2)) => vec1.eq(vec2, engines),
(TypeArgs::Prefix(vec1), TypeArgs::Prefix(vec2)) => vec1.eq(vec2, engines),
_ => false,
}
}
}
impl<T> Spanned for TypeBinding<T> {
fn span(&self) -> Span {
self.span.clone()
}
}
impl PartialEqWithEngines for TypeBinding<()> {
fn eq(&self, other: &Self, engines: &Engines) -> bool {
self.span == other.span && self.type_arguments.eq(&other.type_arguments, engines)
}
}
impl<T> TypeBinding<T> {
pub fn strip_inner(self) -> TypeBinding<()> {
TypeBinding {
inner: (),
type_arguments: self.type_arguments,
span: self.span,
}
}
}
impl TypeBinding<CallPath<(TypeInfo, Ident)>> {
pub(crate) fn type_check_with_type_info(
&self,
handler: &Handler,
ctx: &mut TypeCheckContext,
) -> Result<TypeId, ErrorEmitted> {
let type_engine = ctx.engines.te();
let engines = ctx.engines();
let (type_info, type_ident) = self.inner.suffix.clone();
let type_info_span = type_ident.span();
// find the module that the symbol is in
let type_info_prefix = ctx.namespace.find_module_path(&self.inner.prefixes);
ctx.namespace
.root()
.check_submodule(handler, &type_info_prefix)?;
// create the type info object
let type_info = type_info.apply_type_arguments(
handler,
self.type_arguments.to_vec(),
&type_info_span,
)?;
// resolve the type of the type info object
let type_id = ctx
.resolve_type_with_self(
handler,
type_engine.insert(engines, type_info),
&type_info_span,
EnforceTypeArguments::No,
Some(&type_info_prefix),
)
.unwrap_or_else(|err| type_engine.insert(engines, TypeInfo::ErrorRecovery(err)));
Ok(type_id)
}
}
impl TypeBinding<CallPath> {
pub(crate) fn strip_prefixes(&mut self) {
self.inner.prefixes = vec![];
}
}
/// Trait that adds a workaround for easy generic returns in Rust:
/// https://blog.jcoglan.com/2019/04/22/generic-returns-in-rust/
#[allow(clippy::type_complexity)]
pub(crate) trait TypeCheckTypeBinding<T> {
fn type_check(
&mut self,
handler: &Handler,
ctx: TypeCheckContext,
) -> Result<(DeclRef<DeclId<T>>, Option<TypeId>, Option<ty::TyDecl>), ErrorEmitted>;
}
impl TypeCheckTypeBinding<ty::TyFunctionDecl> for TypeBinding<CallPath> {
fn type_check(
&mut self,
handler: &Handler,
mut ctx: TypeCheckContext,
) -> Result<
(
DeclRef<DeclId<ty::TyFunctionDecl>>,
Option<TypeId>,
Option<ty::TyDecl>,
),
ErrorEmitted,
> {
let type_engine = ctx.engines.te();
let decl_engine = ctx.engines.de();
let engines = ctx.engines();
// Grab the declaration.
let unknown_decl = ctx
.namespace
.resolve_call_path_with_visibility_check(handler, engines, &self.inner)
.cloned()?;
// Check to see if this is a fn declaration.
let fn_ref = unknown_decl.to_fn_ref(handler)?;
// Get a new copy from the declaration engine.
let mut new_copy = decl_engine.get_function(fn_ref.id());
match self.type_arguments {
// Monomorphize the copy, in place.
TypeArgs::Regular(_) => {
ctx.monomorphize(
handler,
&mut new_copy,
self.type_arguments.to_vec_mut(),
EnforceTypeArguments::No,
&self.span,
)?;
}
TypeArgs::Prefix(_) => {
// Resolve the type arguments without monomorphizing.
for type_argument in self.type_arguments.to_vec_mut().iter_mut() {
ctx.resolve_type_with_self(
handler,
type_argument.type_id,
&type_argument.span,
EnforceTypeArguments::Yes,
None,
)
.unwrap_or_else(|err| {
type_engine.insert(engines, TypeInfo::ErrorRecovery(err))
});
}
}
}
// Insert the new copy into the declaration engine.
let new_fn_ref = ctx
.engines
.de()
.insert(new_copy)
.with_parent(ctx.engines.de(), fn_ref.id().into());
Ok((new_fn_ref, None, None))
}
}
impl TypeCheckTypeBinding<ty::TyStructDecl> for TypeBinding<CallPath> {
fn type_check(
&mut self,
handler: &Handler,
mut ctx: TypeCheckContext,
) -> Result<
(
DeclRef<DeclId<ty::TyStructDecl>>,
Option<TypeId>,
Option<ty::TyDecl>,
),
ErrorEmitted,
> {
let type_engine = ctx.engines.te();
let decl_engine = ctx.engines.de();
let engines = ctx.engines();
// Grab the declaration.
let unknown_decl = ctx
.namespace
.resolve_call_path_with_visibility_check(handler, engines, &self.inner)
.cloned()?;
// Check to see if this is a struct declaration.
let struct_ref = unknown_decl.to_struct_ref(handler, engines)?;
// Get a new copy from the declaration engine.
let mut new_copy = decl_engine.get_struct(struct_ref.id());
// Monomorphize the copy, in place.
ctx.monomorphize(
handler,
&mut new_copy,
self.type_arguments.to_vec_mut(),
EnforceTypeArguments::No,
&self.span,
)?;
// Insert the new copy into the declaration engine.
let new_struct_ref = ctx.engines.de().insert(new_copy);
// Take any trait items that apply to the old type and copy them to the new type.
let type_id = type_engine.insert(engines, TypeInfo::Struct(new_struct_ref.clone()));
ctx.namespace
.insert_trait_implementation_for_type(engines, type_id);
Ok((new_struct_ref, Some(type_id), None))
}
}
impl TypeCheckTypeBinding<ty::TyEnumDecl> for TypeBinding<CallPath> {
fn type_check(
&mut self,
handler: &Handler,
mut ctx: TypeCheckContext,
) -> Result<
(
DeclRef<DeclId<ty::TyEnumDecl>>,
Option<TypeId>,
Option<ty::TyDecl>,
),
ErrorEmitted,
> {
let type_engine = ctx.engines.te();
let decl_engine = ctx.engines.de();
let engines = ctx.engines();
// Grab the declaration.
let unknown_decl = ctx
.namespace
.resolve_call_path_with_visibility_check(handler, engines, &self.inner)
.cloned()?;
// Get a new copy from the declaration engine.
let mut new_copy = if let ty::TyDecl::EnumVariantDecl(ty::EnumVariantDecl {
enum_ref,
..
}) = &unknown_decl
{
decl_engine.get_enum(enum_ref.id())
} else {
// Check to see if this is a enum declaration.
let enum_ref = unknown_decl.to_enum_ref(handler, engines)?;
decl_engine.get_enum(enum_ref.id())
};
// Monomorphize the copy, in place.
ctx.monomorphize(
handler,
&mut new_copy,
self.type_arguments.to_vec_mut(),
EnforceTypeArguments::No,
&self.span,
)?;
// Insert the new copy into the declaration engine.
let new_enum_ref = ctx.engines.de().insert(new_copy);
// Take any trait items that apply to the old type and copy them to the new type.
let type_id = type_engine.insert(engines, TypeInfo::Enum(new_enum_ref.clone()));
ctx.namespace
.insert_trait_implementation_for_type(engines, type_id);
Ok((new_enum_ref, Some(type_id), Some(unknown_decl)))
}
}
impl TypeCheckTypeBinding<ty::TyConstantDecl> for TypeBinding<CallPath> {
fn type_check(
&mut self,
handler: &Handler,
ctx: TypeCheckContext,
) -> Result<
(
DeclRef<DeclId<ty::TyConstantDecl>>,
Option<TypeId>,
Option<ty::TyDecl>,
),
ErrorEmitted,
> {
let engines = ctx.engines();
// Grab the declaration.
let unknown_decl = ctx
.namespace
.resolve_call_path_with_visibility_check(handler, engines, &self.inner)
.cloned()?;
// Check to see if this is a const declaration.
let const_ref = unknown_decl.to_const_ref(handler)?;
Ok((const_ref, None, None))
}
}