1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
use sway_error::{
    error::CompileError,
    handler::{ErrorEmitted, Handler},
};
use sway_types::Spanned;
use sway_utils::iter_prefixes;

use crate::{
    language::{ty, CallPath},
    Engines, Ident,
};

use super::{module::Module, namespace::Namespace, Path};

/// The root module, from which all other modules can be accessed.
///
/// This is equivalent to the "crate root" of a Rust crate.
///
/// We use a custom type for the `Root` in order to ensure that methods that only work with
/// canonical paths, or that use canonical paths internally, are *only* called from the root. This
/// normally includes methods that first lookup some canonical path via `use_synonyms` before using
/// that canonical path to look up the symbol declaration.
#[derive(Clone, Debug)]
pub struct Root {
    pub(crate) module: Module,
}

impl Root {
    /// Resolve a symbol that is potentially prefixed with some path, e.g. `foo::bar::symbol`.
    ///
    /// This is short-hand for concatenating the `mod_path` with the `call_path`'s prefixes and
    /// then calling `resolve_symbol` with the resulting path and call_path's suffix.
    pub(crate) fn resolve_call_path(
        &self,
        handler: &Handler,
        mod_path: &Path,
        call_path: &CallPath,
    ) -> Result<&ty::TyDecl, ErrorEmitted> {
        let symbol_path: Vec<_> = mod_path
            .iter()
            .chain(&call_path.prefixes)
            .cloned()
            .collect();
        self.resolve_symbol(handler, &symbol_path, &call_path.suffix)
    }

    /// Resolve a symbol that is potentially prefixed with some path, e.g. `foo::bar::symbol`.
    ///
    /// This will concatenate the `mod_path` with the `call_path`'s prefixes and
    /// then calling `resolve_symbol` with the resulting path and call_path's suffix.
    ///
    /// The `mod_path` is significant here as we assume the resolution is done within the
    /// context of the module pointed to by `mod_path` and will only check the call path prefixes
    /// and the symbol's own visibility
    pub(crate) fn resolve_call_path_with_visibility_check(
        &self,
        handler: &Handler,
        engines: &Engines,
        mod_path: &Path,
        call_path: &CallPath,
    ) -> Result<&ty::TyDecl, ErrorEmitted> {
        let decl = self.resolve_call_path(handler, mod_path, call_path)?;

        // In case there are no prefixes we don't need to check visibility
        if call_path.prefixes.is_empty() {
            return Ok(decl);
        }

        // check the visibility of the call path elements
        // we don't check the first prefix because direct children are always accessible
        for prefix in iter_prefixes(&call_path.prefixes).skip(1) {
            let module = self.check_submodule(handler, prefix)?;
            if module.visibility.is_private() {
                let prefix_last = prefix[prefix.len() - 1].clone();
                handler.emit_err(CompileError::ImportPrivateModule {
                    span: prefix_last.span(),
                    name: prefix_last,
                });
            }
        }

        // check the visibility of the symbol itself
        if !decl.visibility(engines.de()).is_public() {
            handler.emit_err(CompileError::ImportPrivateSymbol {
                name: call_path.suffix.clone(),
                span: call_path.suffix.span(),
            });
        }

        Ok(decl)
    }

    /// Given a path to a module and the identifier of a symbol within that module, resolve its
    /// declaration.
    ///
    /// If the symbol is within the given module's namespace via import, we recursively traverse
    /// imports until we find the original declaration.
    pub(crate) fn resolve_symbol(
        &self,
        handler: &Handler,
        mod_path: &Path,
        symbol: &Ident,
    ) -> Result<&ty::TyDecl, ErrorEmitted> {
        self.check_submodule(handler, mod_path).and_then(|module| {
            let true_symbol = self[mod_path]
                .use_aliases
                .get(symbol.as_str())
                .unwrap_or(symbol);
            match module.use_synonyms.get(symbol) {
                Some((_, _, decl @ ty::TyDecl::EnumVariantDecl { .. }, _)) => Ok(decl),
                Some((src_path, _, _, _)) if mod_path != src_path => {
                    // TODO: check that the symbol import is public?
                    self.resolve_symbol(handler, src_path, true_symbol)
                }
                _ => module
                    .check_symbol(true_symbol)
                    .map_err(|e| handler.emit_err(e)),
            }
        })
    }
}

impl std::ops::Deref for Root {
    type Target = Module;
    fn deref(&self) -> &Self::Target {
        &self.module
    }
}

impl std::ops::DerefMut for Root {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.module
    }
}

impl From<Module> for Root {
    fn from(module: Module) -> Self {
        Root { module }
    }
}

impl From<Namespace> for Root {
    fn from(namespace: Namespace) -> Self {
        namespace.root
    }
}