1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
use crate::{
    error::*,
    language::{ty, CallPath},
    type_system::*,
    CompileResult, Ident, TypeInfo,
};

use super::{module::Module, namespace::Namespace, Path};

use sway_error::error::CompileError;
use sway_types::Spanned;

use std::collections::VecDeque;

/// The root module, from which all other modules can be accessed.
///
/// This is equivalent to the "crate root" of a Rust crate.
///
/// We use a custom type for the `Root` in order to ensure that methods that only work with
/// canonical paths, or that use canonical paths internally, are *only* called from the root. This
/// normally includes methods that first lookup some canonical path via `use_synonyms` before using
/// that canonical path to look up the symbol declaration.
#[derive(Clone, Debug, PartialEq)]
pub struct Root {
    pub(crate) module: Module,
}

impl Root {
    /// Resolve a symbol that is potentially prefixed with some path, e.g. `foo::bar::symbol`.
    ///
    /// This is short-hand for concatenating the `mod_path` with the `call_path`'s prefixes and
    /// then calling `resolve_symbol` with the resulting path and call_path's suffix.
    pub(crate) fn resolve_call_path(
        &self,
        mod_path: &Path,
        call_path: &CallPath,
    ) -> CompileResult<&ty::TyDeclaration> {
        let symbol_path: Vec<_> = mod_path
            .iter()
            .chain(&call_path.prefixes)
            .cloned()
            .collect();
        self.resolve_symbol(&symbol_path, &call_path.suffix)
    }

    /// Given a path to a module and the identifier of a symbol within that module, resolve its
    /// declaration.
    ///
    /// If the symbol is within the given module's namespace via import, we recursively traverse
    /// imports until we find the original declaration.
    pub(crate) fn resolve_symbol(
        &self,
        mod_path: &Path,
        symbol: &Ident,
    ) -> CompileResult<&ty::TyDeclaration> {
        self.check_submodule(mod_path).flat_map(|module| {
            let true_symbol = self[mod_path]
                .use_aliases
                .get(symbol.as_str())
                .unwrap_or(symbol);
            match module.use_synonyms.get(symbol) {
                Some((src_path, _)) if mod_path != src_path => {
                    self.resolve_symbol(src_path, true_symbol)
                }
                _ => CompileResult::from(module.check_symbol(true_symbol)),
            }
        })
    }

    /// Given a method and a type (plus a `self_type` to potentially resolve it), find that method
    /// in the namespace. Requires `args_buf` because of some special casing for the standard
    /// library where we pull the type from the arguments buffer.
    ///
    /// This function will generate a missing method error if the method is not found.
    ///
    /// This method should only be called on the root namespace. `mod_path` is the current module,
    /// `method_path` is assumed to be absolute.
    pub(crate) fn find_method_for_type(
        &mut self,
        mod_path: &Path,
        mut type_id: TypeId,
        method_prefix: &Path,
        method_name: &Ident,
        self_type: TypeId,
        args_buf: &VecDeque<ty::TyExpression>,
    ) -> CompileResult<ty::TyFunctionDeclaration> {
        let mut warnings = vec![];
        let mut errors = vec![];

        // grab the local module
        let local_module = check!(
            self.check_submodule(mod_path),
            return err(warnings, errors),
            warnings,
            errors
        );

        // grab the local methods from the local module
        let local_methods = local_module.get_methods_for_type(type_id);

        type_id.replace_self_type(self_type);

        // resolve the type
        let type_id = check!(
            resolve_type(
                type_id,
                &method_name.span(),
                EnforceTypeArguments::No,
                None,
                self,
                method_prefix
            ),
            insert_type(TypeInfo::ErrorRecovery),
            warnings,
            errors
        );

        // grab the module where the type itself is declared
        let type_module = check!(
            self.check_submodule(method_prefix),
            return err(warnings, errors),
            warnings,
            errors
        );

        // grab the methods from where the type is declared
        let mut type_methods = type_module.get_methods_for_type(type_id);

        let mut methods = local_methods;
        methods.append(&mut type_methods);

        match methods
            .into_iter()
            .find(|ty::TyFunctionDeclaration { name, .. }| name == method_name)
        {
            Some(o) => ok(o, warnings, errors),
            None => {
                if args_buf.get(0).map(|x| look_up_type_id(x.return_type))
                    != Some(TypeInfo::ErrorRecovery)
                {
                    errors.push(CompileError::MethodNotFound {
                        method_name: method_name.clone(),
                        type_name: type_id.to_string(),
                    });
                }
                err(warnings, errors)
            }
        }
    }
}

impl std::ops::Deref for Root {
    type Target = Module;
    fn deref(&self) -> &Self::Target {
        &self.module
    }
}

impl std::ops::DerefMut for Root {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.module
    }
}

impl From<Module> for Root {
    fn from(module: Module) -> Self {
        Root { module }
    }
}

impl From<Namespace> for Root {
    fn from(namespace: Namespace) -> Self {
        namespace.root
    }
}