1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
use std::{fmt, ops::Range};

use crossbeam_utils::CachePadded;

use crate::{
    buffer::{Buffer, BufferSlice, BufferValue, BufferWithLen, Drain, Resize},
    error::{TryDequeueError, TryEnqueueError},
    loom::{
        atomic::{AtomicUsize, Ordering},
        Backoff,
    },
    notify::Notify,
};

const CLOSED_FLAG: usize = (usize::MAX >> 1) + 1;

/// A buffered MPSC "swap-buffer" queue.
pub struct Queue<B, N = ()>
where
    B: Buffer,
{
    buffer_remain: CachePadded<AtomicUsize>,
    pending_dequeue: CachePadded<AtomicUsize>,
    buffers: [BufferWithLen<B>; 2],
    capacity: AtomicUsize,
    notify: N,
}

impl<B, N> Queue<B, N>
where
    B: Buffer,
    N: Default,
{
    /// Create a new queue using buffer default.
    ///
    /// Buffer default may have a non-zero capacity, e.g. array buffer.
    ///
    /// # Examples
    /// ```
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// let queue: Queue<VecBuffer<usize>> = Queue::new();
    /// ```
    pub fn new() -> Self {
        let buffers: [BufferWithLen<B>; 2] = Default::default();
        let capacity = buffers[0].capacity();
        Self {
            buffer_remain: AtomicUsize::new(capacity << 1).into(),
            pending_dequeue: AtomicUsize::new(0).into(),
            buffers,
            capacity: AtomicUsize::new(capacity),
            notify: Default::default(),
        }
    }
}

impl<B, N> Queue<B, N>
where
    B: Buffer + Resize,
    N: Default,
{
    /// Creates a new queue with the given capacity.
    ///
    /// # Examples
    /// ```
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(42);
    /// ```
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            buffer_remain: AtomicUsize::new(capacity << 1).into(),
            pending_dequeue: AtomicUsize::new(0).into(),
            buffers: [
                BufferWithLen::with_capacity(capacity),
                BufferWithLen::with_capacity(capacity),
            ],
            capacity: AtomicUsize::new(capacity),
            notify: Default::default(),
        }
    }
}

impl<B, N> Queue<B, N>
where
    B: Buffer,
{
    /// Returns queue's [`Notify`] implementor.
    ///
    /// # Examples
    /// ```
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// use swap_buffer_queue::notify::Notify;
    ///
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(42);
    /// queue.notify().notify_dequeue();
    /// ```
    pub fn notify(&self) -> &N {
        &self.notify
    }

    /// Returns the current buffer capacity.
    ///
    /// # Examples
    /// ```
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(42);
    /// assert_eq!(queue.capacity(), 42);
    /// ```
    pub fn capacity(&self) -> usize {
        // cannot use `Buffer::capacity` because of data race
        self.capacity.load(Ordering::Relaxed)
    }

    /// Returns the current buffer length.
    ///
    /// # Examples
    /// ```
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(42);
    /// assert_eq!(queue.len(), 0);
    /// queue.try_enqueue(0).unwrap();
    /// assert_eq!(queue.len(), 1);
    /// ```
    pub fn len(&self) -> usize {
        self.buffers[self.buffer_remain.load(Ordering::Relaxed) & 1].len()
    }

    /// Returns `true` if the current buffer is empty.
    ///
    /// # Examples
    /// ```
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(42);
    /// assert!(queue.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns `true` if the queue is closed.
    ///
    /// # Examples
    /// ```
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(42);
    /// assert!(!queue.is_closed());
    /// queue.close();
    /// assert!(queue.is_closed());
    /// ```
    pub fn is_closed(&self) -> bool {
        self.buffer_remain.load(Ordering::Acquire) & CLOSED_FLAG != 0
    }

    /// Reopen a closed queue.
    ///
    /// Calling this method when the queue is not closed has no effect.
    ///
    /// # Examples
    /// ```
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(42);
    /// queue.close();
    /// assert!(queue.is_closed());
    /// queue.reopen();
    /// assert!(!queue.is_closed());
    /// ```
    pub fn reopen(&self) {
        self.buffer_remain.fetch_and(!CLOSED_FLAG, Ordering::AcqRel);
    }

    fn try_dequeue_spin(&self, buffer_index: usize, len: usize) -> Option<BufferSlice<B, N>> {
        assert_ne!(len, 0);
        let buffer = &self.buffers[buffer_index];
        let backoff = Backoff::new();
        loop {
            let buffer_len = buffer.len();
            if buffer_len >= len {
                let range = buffer_len - len..buffer_len;
                let slice = unsafe { buffer.slice(range.clone()) };
                return Some(BufferSlice::new(self, buffer_index, range, slice));
            }
            if backoff.is_completed() {
                self.pending_dequeue
                    .store(buffer_index | (len << 1), Ordering::Relaxed);
                return None;
            } else {
                backoff.snooze();
            }
        }
    }

    pub(crate) fn release(&self, buffer_index: usize, range: Range<usize>) {
        unsafe { self.buffers[buffer_index].clear(range) };
        self.pending_dequeue
            .store(!buffer_index & 1, Ordering::Relaxed);
    }

    pub(crate) fn requeue(&self, buffer_index: usize, range: Range<usize>) {
        if range.is_empty() {
            self.release(buffer_index, range);
        } else {
            self.pending_dequeue.store(
                buffer_index | ((range.end - range.start) << 1),
                Ordering::Relaxed,
            );
        }
    }
}

impl<B, N> Queue<B, N>
where
    B: Buffer,
    N: Notify,
{
    /// Tries enqueuing the given value into the queue.
    ///
    /// Enqueuing will fail if the queue has insufficient capacity, or if it is closed. In case of
    /// success, it will notify waiting dequeuing operations using [`Notify::notify_dequeue`].
    ///
    /// # Examples
    /// ```
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// # use swap_buffer_queue::error::TryEnqueueError;
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(1);
    /// queue.try_enqueue(0).unwrap();
    /// // queue is full
    /// assert_eq!(
    ///     queue.try_enqueue(0),
    ///     Err(TryEnqueueError::InsufficientCapacity(0))
    /// );
    /// // let's close the queue
    /// queue.close();
    /// assert_eq!(queue.try_enqueue(0), Err(TryEnqueueError::Closed(0)));
    /// ```
    pub fn try_enqueue<T>(&self, value: T) -> Result<(), TryEnqueueError<T>>
    where
        T: BufferValue<B>,
    {
        let shifted_size = value.size() << 1;
        let mut buffer_remain = self.buffer_remain.load(Ordering::Acquire);
        let backoff = Backoff::new();
        let mut spin = false;
        loop {
            if buffer_remain & CLOSED_FLAG != 0 {
                return Err(TryEnqueueError::Closed(value));
            }
            if buffer_remain < shifted_size {
                return Err(TryEnqueueError::InsufficientCapacity(value));
            }
            if spin {
                backoff.spin();
            }
            match self.buffer_remain.compare_exchange_weak(
                buffer_remain,
                buffer_remain - shifted_size,
                Ordering::AcqRel,
                Ordering::Relaxed,
            ) {
                Ok(_) => break,
                Err(remain) => {
                    spin = remain & 1 == buffer_remain & 1;
                    buffer_remain = remain;
                }
            }
        }
        let buffer = &self.buffers[buffer_remain & 1];
        let index = buffer.capacity() - (buffer_remain >> 1);
        unsafe { buffer.insert(index, value) };
        self.notify.notify_dequeue();
        Ok(())
    }

    fn try_dequeue_internal(
        &self,
        resize: Option<impl FnOnce(&BufferWithLen<B>) -> usize>,
        insert: Option<impl FnOnce(&BufferWithLen<B>) -> usize>,
    ) -> Result<BufferSlice<B, N>, TryDequeueError> {
        let pending_dequeue = self.pending_dequeue.swap(usize::MAX, Ordering::Relaxed);
        if pending_dequeue == usize::MAX {
            return Err(TryDequeueError::Conflict);
        }
        let buffer_index = pending_dequeue & 1;
        if pending_dequeue >> 1 != 0 {
            return self
                .try_dequeue_spin(buffer_index, pending_dequeue >> 1)
                .ok_or(TryDequeueError::Pending);
        }
        let next_buffer_index = buffer_index ^ 1;
        let next_buffer = &self.buffers[next_buffer_index];
        let mut next_capa = next_buffer.capacity();
        let mut capa_updated = false;
        let mut update_capa = |capa| {
            if capa != next_capa {
                next_capa = capa;
                capa_updated = true;
            }
        };
        if let Some(resize) = resize {
            update_capa(resize(next_buffer));
        }
        if let Some(insert) = insert {
            update_capa(insert(next_buffer));
        }
        let next_buffer_remain = next_buffer_index | (next_capa << 1);
        let mut buffer_remain = self.buffer_remain.load(Ordering::Acquire);
        assert_eq!(buffer_index, buffer_remain & 1);
        let capacity = self.buffers[buffer_index].capacity();
        if ((buffer_remain & !CLOSED_FLAG) >> 1) == capacity && !capa_updated {
            self.pending_dequeue
                .store(pending_dequeue, Ordering::Relaxed);
            return Err(if buffer_remain & CLOSED_FLAG != 0 {
                TryDequeueError::Closed
            } else {
                TryDequeueError::Empty
            });
        }
        let backoff = Backoff::new();
        while let Err(s) = self.buffer_remain.compare_exchange_weak(
            buffer_remain,
            next_buffer_remain | (buffer_remain & CLOSED_FLAG),
            Ordering::AcqRel,
            Ordering::Relaxed,
        ) {
            buffer_remain = s;
            if buffer_remain >> 1 != 0 {
                backoff.spin();
            }
        }
        if self.capacity() != next_buffer.capacity() {
            self.capacity
                .store(next_buffer.capacity(), Ordering::Relaxed);
        }
        self.notify.notify_enqueue();
        let len = capacity - ((buffer_remain & !CLOSED_FLAG) >> 1);
        if capa_updated && len == 0 {
            self.pending_dequeue
                .store(!buffer_index & 1, Ordering::Relaxed);
            return Err(TryDequeueError::Empty);
        }
        self.try_dequeue_spin(buffer_index, len)
            .ok_or(TryDequeueError::Pending)
    }

    /// Tries dequeuing a buffer with all enqueued values from the queue.
    ///
    /// This method swaps the current buffer with the other one, which is empty. All concurrent
    /// enqueuing must end before the the current buffer is really dequeuable, so the queue may
    /// be in a transitory state where `try_dequeue` must be retried. In this state, after a spin
    /// loop, this method will return a [`TryDequeueError::Pending`] error.
    ///
    /// Dequeuing also fails if the queue is empty, or if it is closed. Moreover, as the algorithm
    /// is MPSC, dequeuing is protected against concurrent calls, failing with
    /// [`TryDequeueError::Conflict`] error.
    ///
    /// It returns a [`BufferSlice`], which holds, as its name may indicate, a reference to the
    /// dequeued buffer. That's why, the concurrent dequeuing protection is maintained for the
    /// lifetime of the buffer slice.
    ///
    /// # Examples
    /// ```
    /// # use std::ops::Deref;
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// # use swap_buffer_queue::error::TryDequeueError;
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(42);
    /// queue.try_enqueue(0).unwrap();
    /// queue.try_enqueue(1).unwrap();
    /// let slice = queue.try_dequeue().unwrap();
    /// assert_eq!(slice.deref(), &[0, 1]);
    /// // dequeuing cannot be done concurrently (`slice` is still in scope)
    /// assert_eq!(queue.try_dequeue().unwrap_err(), TryDequeueError::Conflict);
    /// drop(slice);
    /// // let's close the queue
    /// queue.try_enqueue(2).unwrap();
    /// queue.close();
    /// // queue can be dequeued while closed when not empty
    /// let slice = queue.try_dequeue().unwrap();
    /// assert_eq!(slice.deref(), &[2]);
    /// drop(slice);
    /// assert_eq!(queue.try_dequeue().unwrap_err(), TryDequeueError::Closed)
    /// ```
    pub fn try_dequeue(&self) -> Result<BufferSlice<B, N>, TryDequeueError> {
        self.try_dequeue_internal(
            None::<&dyn Fn(&BufferWithLen<B>) -> usize>,
            None::<&dyn Fn(&BufferWithLen<B>) -> usize>,
        )
    }

    /// Closes the queue.
    ///
    /// Closed queue can no more accept enqueuing, but it can be dequeued while not empty.
    /// Calling this method on a closed queue has no effect.
    /// See [`reopen`](Queue::reopen) to reopen a closed queue.
    /// # Examples
    /// ```
    /// # use std::ops::Deref;
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// # use swap_buffer_queue::error::{TryDequeueError, TryEnqueueError};
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(42);
    /// queue.try_enqueue(0).unwrap();
    /// queue.close();
    /// assert!(queue.is_closed());
    /// assert_eq!(queue.try_enqueue(1), Err(TryEnqueueError::Closed(1)));
    /// assert_eq!(queue.try_dequeue().unwrap().deref(), &[0]);
    /// assert_eq!(queue.try_dequeue().unwrap_err(), TryDequeueError::Closed);
    /// ```
    pub fn close(&self) {
        self.buffer_remain.fetch_or(CLOSED_FLAG, Ordering::AcqRel);
        self.notify.notify_dequeue();
        self.notify.notify_enqueue();
    }
}

impl<B, N> Queue<B, N>
where
    B: Buffer + Resize,
    N: Notify,
{
    /// Tries dequeuing a buffer with all enqueued values from the queue, and resizes the next
    /// buffer to be used for enqueuing.
    ///
    /// This method is an extension of [`try_dequeue`](Queue::try_dequeue) method. In fact,
    /// before swapping the buffers, next one is empty and protected, so it can be resized, and
    /// it is also possible to add values in it before making it available for enqueuing.
    /// This can be used to make the queue [unbounded](Queue#an-amortized-unbounded-recipe).
    ///
    /// It is worth to be noted that only one buffer is resized, so it can lead to asymmetric buffers.
    ///
    /// # Examples
    /// ```
    /// # use std::ops::Deref;
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::VecBuffer;
    /// # use swap_buffer_queue::error::TryEnqueueError;
    /// let queue: Queue<VecBuffer<usize>> = Queue::with_capacity(1);
    /// queue.try_enqueue(0).unwrap();
    /// // queue is full
    /// assert_eq!(
    ///     queue.try_enqueue(1),
    ///     Err(TryEnqueueError::InsufficientCapacity(1))
    /// );
    /// // dequeue and resize, inserting elements before the buffer is available
    /// let slice = queue
    ///     .try_dequeue_and_resize(3, Some(std::iter::once(42)))
    ///     .unwrap();
    /// assert_eq!(slice.deref(), &[0]);
    /// drop(slice);
    /// // capacity has been increased
    /// queue.try_enqueue(1).unwrap();
    /// queue.try_enqueue(2).unwrap();
    /// let slice = queue.try_dequeue().unwrap();
    /// assert_eq!(slice.deref(), &[42, 1, 2]);
    /// ```
    ///
    /// ## An amortized unbounded recipe
    ///
    /// ```rust
    /// # use std::ops::Deref;
    /// # use std::sync::Mutex;
    /// # use swap_buffer_queue::Queue;
    /// # use swap_buffer_queue::buffer::{BufferSlice, BufferValue, VecBuffer};
    /// # use swap_buffer_queue::error::{EnqueueError, TryDequeueError, TryEnqueueError};
    /// # use swap_buffer_queue::notify::Notify;
    /// fn enqueue_unbounded<T: BufferValue<VecBuffer<T>>>(
    ///     queue: &Queue<VecBuffer<T>>,
    ///     overflow: &Mutex<Vec<T>>,
    ///     mut value: T,
    /// ) -> Result<(), EnqueueError<T>> {
    ///     // first, try to enqueue normally
    ///     match queue.try_enqueue(value) {
    ///         Err(TryEnqueueError::InsufficientCapacity(v)) => value = v,
    ///         res => return res,
    ///     };
    ///     // if the enqueuing fails, lock the overflow
    ///     let mut guard = overflow.lock().unwrap();
    ///     // retry to enqueue (we never know what happened during lock acquisition)
    ///     match queue.try_enqueue(value) {
    ///         Err(TryEnqueueError::InsufficientCapacity(v)) => value = v,
    ///         res => return res,
    ///     };
    ///     // then push the values to the overflow vector
    ///     guard.push(value);
    ///     // notify possible waiting dequeue
    ///     queue.notify().notify_dequeue();
    ///     Ok(())
    /// }
    ///
    /// fn try_dequeue_unbounded<'a, T>(
    ///     queue: &'a Queue<VecBuffer<T>>,
    ///     overflow: &Mutex<Vec<T>>,
    /// ) -> Result<BufferSlice<'a, VecBuffer<T>, ()>, TryDequeueError> {
    ///     // lock the overflow and use `try_dequeue_and_resize` to drain the overflow into the
    ///     // queue
    ///     let mut guard = overflow.lock().unwrap();
    ///     queue.try_dequeue_and_resize(queue.capacity() + guard.len(), Some(guard.drain(..)))
    /// }
    ///
    /// // queue is initialized with zero capacity
    /// let queue: Queue<VecBuffer<usize>> = Queue::new();
    /// let overflow = Mutex::new(Vec::new());
    /// assert_eq!(queue.capacity(), 0);
    /// enqueue_unbounded(&queue, &overflow, 0).unwrap();
    /// assert_eq!(queue.capacity(), 0);
    /// assert_eq!(
    ///     try_dequeue_unbounded(&queue, &overflow).unwrap_err(),
    ///     TryDequeueError::Empty
    /// );
    /// assert_eq!(queue.capacity(), 1);
    /// assert_eq!(queue.len(), 1);
    /// enqueue_unbounded(&queue, &overflow, 1).unwrap();
    /// assert_eq!(queue.capacity(), 1);
    /// assert_eq!(queue.len(), 1);
    /// assert_eq!(overflow.lock().unwrap().len(), 1);
    /// assert_eq!(
    ///     try_dequeue_unbounded(&queue, &overflow).unwrap().deref(),
    ///     &[0]
    /// );
    /// assert_eq!(queue.capacity(), 2);
    /// assert_eq!(queue.len(), 1);
    /// enqueue_unbounded(&queue, &overflow, 2).unwrap();
    /// assert_eq!(
    ///     try_dequeue_unbounded(&queue, &overflow).unwrap().deref(),
    ///     &[1, 2]
    /// );
    /// ```
    pub fn try_dequeue_and_resize<T>(
        &self,
        capacity: impl Into<Option<usize>>,
        insert: Option<impl Iterator<Item = T>>,
    ) -> Result<BufferSlice<B, N>, TryDequeueError>
    where
        T: BufferValue<B>,
    {
        let capacity = capacity.into();
        self.try_dequeue_internal(
            capacity.map(|capa| {
                move |buf: &BufferWithLen<B>| {
                    unsafe { buf.resize(capa) };
                    capa
                }
            }),
            insert.map(|insert| {
                |buf: &BufferWithLen<B>| {
                    let mut next_capa = buf.capacity();
                    for (i, value) in insert.enumerate() {
                        let value_size = value.size();
                        if value_size > buf.capacity() {
                            break;
                        }
                        unsafe { buf.insert(i, value) };
                        next_capa -= value_size;
                    }
                    next_capa
                }
            }),
        )
    }
}

impl<B, N> Queue<B, N>
where
    B: Buffer + Drain,
{
    pub(crate) fn remove(&self, buffer_index: usize, index: usize) -> (B::Value, usize) {
        unsafe { self.buffers[buffer_index].remove(index) }
    }
}

impl<B, N> Default for Queue<B, N>
where
    B: Buffer,
    N: Default,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<B, N> fmt::Debug for Queue<B, N>
where
    B: Buffer,
    N: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Queue")
            .field("capacity", &self.capacity())
            .field("len", &self.len())
            .field("notify", &self.notify)
            .finish()
    }
}

impl<B, N> Drop for Queue<B, N>
where
    B: Buffer,
{
    fn drop(&mut self) {
        let pending_dequeue = self.pending_dequeue.swap(usize::MAX, Ordering::AcqRel);
        let buffer_index = pending_dequeue & 1;
        if pending_dequeue != usize::MAX && pending_dequeue >> 1 != 0 {
            self.try_dequeue_spin(buffer_index, pending_dequeue >> 1);
        }
    }
}