swamp_script_analyzer/
lib.rs

1/*
2 * Copyright (c) Peter Bjorklund. All rights reserved. https://github.com/swamp/script
3 * Licensed under the MIT License. See LICENSE in the project root for license information.
4 */
5pub mod access;
6pub mod call;
7pub mod constant;
8pub mod def;
9pub mod err;
10pub mod internal;
11pub mod literal;
12pub mod operator;
13pub mod pattern;
14pub mod prelude;
15mod structure;
16pub mod types;
17pub mod variable;
18use crate::err::{Error, ErrorKind};
19use seq_map::SeqMap;
20use std::mem::take;
21use std::num::{ParseFloatError, ParseIntError};
22use std::rc::Rc;
23use swamp_script_semantic::modules::ModuleRef;
24use swamp_script_semantic::prelude::*;
25use swamp_script_semantic::symtbl::{FuncDef, Symbol, SymbolTable, SymbolTableRef};
26use swamp_script_semantic::{
27    AnonymousStructLiteral, ArgumentExpressionOrLocation, LocationAccess, LocationAccessKind,
28    MutOrImmutableExpression, NormalPattern, Postfix, PostfixKind, RangeMode,
29    SingleLocationExpression, SingleLocationExpressionKind, SingleMutLocationExpression,
30    TypeWithMut, WhenBinding, check_assignable_anonymous_struct_types, same_anon_struct_ref,
31};
32use swamp_script_source_map::SourceMap;
33use tracing::error;
34use tracing::info;
35
36#[must_use]
37pub fn convert_range_mode(range_mode: &swamp_script_ast::RangeMode) -> RangeMode {
38    match range_mode {
39        swamp_script_ast::RangeMode::Inclusive => RangeMode::Inclusive,
40        swamp_script_ast::RangeMode::Exclusive => RangeMode::Exclusive,
41    }
42}
43
44#[derive(Copy, Clone, Eq, PartialEq, Debug)]
45pub enum LocationSide {
46    Lhs,
47    Rhs,
48}
49
50#[derive(Debug)]
51pub struct AutoUseModules {
52    pub modules: Vec<SymbolTableRef>,
53}
54
55#[derive(Debug)]
56pub struct Program {
57    pub state: ProgramState,
58    pub modules: Modules,
59    pub auto_use_modules: AutoUseModules,
60}
61
62impl Default for Program {
63    fn default() -> Self {
64        Self::new()
65    }
66}
67
68impl Program {
69    #[must_use]
70    pub fn new() -> Self {
71        Self {
72            state: ProgramState::new(),
73            modules: Modules::new(),
74            auto_use_modules: AutoUseModules {
75                modules: Vec::new(),
76            },
77        }
78    }
79}
80
81#[must_use]
82pub const fn convert_span(without: &swamp_script_ast::SpanWithoutFileId, file_id: FileId) -> Span {
83    Span {
84        file_id,
85        offset: without.offset,
86        length: without.length,
87    }
88}
89
90pub const SPARSE_TYPE_ID: TypeNumber = 999;
91pub const SPARSE_ID_TYPE_ID: TypeNumber = 998;
92
93#[derive(Debug, Clone, Copy, PartialEq, Eq)]
94pub enum TypeContextScope {
95    InsideFunction, // Allow return, but not break
96    InsideLoop,     // Allow break and return
97    /// Inside both a function and a loop
98    /// Allows: return, break, and continue
99    InsideBothFunctionAndLoop,
100    ArgumentOrOutsideFunction, // Allow neither break nor return
101}
102
103impl TypeContextScope {
104    /// Returns true if return statements are allowed in this scope
105    #[must_use]
106    pub fn allows_return(&self) -> bool {
107        matches!(self, Self::InsideFunction | Self::InsideBothFunctionAndLoop)
108    }
109
110    /// Returns true if break statements are allowed in this scope
111    #[must_use]
112    pub fn allows_break(&self) -> bool {
113        matches!(self, Self::InsideLoop | Self::InsideBothFunctionAndLoop)
114    }
115
116    /// Returns true if continue statements are allowed in this scope
117    #[must_use]
118    pub fn allows_continue(&self) -> bool {
119        self.allows_break() // Same rules as break
120    }
121
122    /// Creates a new scope when entering a function
123    #[must_use]
124    pub fn enter_function(&self) -> Self {
125        match self {
126            Self::ArgumentOrOutsideFunction => Self::InsideFunction,
127            Self::InsideLoop => Self::InsideBothFunctionAndLoop,
128            _ => *self,
129        }
130    }
131
132    /// Creates a new scope when entering a loop
133    #[must_use]
134    pub fn enter_loop(&self) -> Self {
135        match self {
136            Self::ArgumentOrOutsideFunction => Self::InsideLoop,
137            Self::InsideFunction => Self::InsideBothFunctionAndLoop,
138            _ => *self,
139        }
140    }
141}
142
143/// Type checking context
144#[derive(Debug, Clone)]
145pub struct TypeContext<'a> {
146    /// Expected type for the current expression
147    pub expected_type: Option<&'a Type>,
148
149    /// Return type of the enclosing function
150    pub return_type: Option<&'a Type>,
151
152    pub scope: TypeContextScope,
153
154    pub is_in_compare_like: bool,
155}
156
157impl TypeContext<'_> {
158    pub(crate) fn allows_continue(&self) -> bool {
159        self.scope.allows_continue() && self.is_in_compare_like
160    }
161}
162
163impl TypeContext<'_> {
164    pub(crate) fn allows_return(&self) -> bool {
165        self.scope.allows_return() && self.is_in_compare_like
166    }
167}
168
169impl TypeContext<'_> {
170    pub(crate) fn allows_break(&self) -> bool {
171        self.scope.allows_break()
172    }
173}
174
175impl<'a> TypeContext<'a> {
176    #[must_use]
177    pub const fn new(
178        expected_type: Option<&'a Type>,
179        return_type: Option<&'a Type>,
180        scope: TypeContextScope,
181    ) -> Self {
182        Self {
183            expected_type,
184            return_type,
185            scope,
186            is_in_compare_like: false,
187        }
188    }
189
190    pub const fn new_argument(required_type: &'a Type) -> Self {
191        Self {
192            expected_type: Some(required_type),
193            return_type: None,
194            scope: TypeContextScope::ArgumentOrOutsideFunction,
195            is_in_compare_like: false,
196        }
197    }
198
199    #[must_use]
200    pub const fn new_unsure_argument(expected_type: Option<&'a Type>) -> Self {
201        Self {
202            expected_type,
203            return_type: None,
204            scope: TypeContextScope::ArgumentOrOutsideFunction,
205            is_in_compare_like: false,
206        }
207    }
208
209    #[must_use]
210    pub const fn new_anything_argument() -> Self {
211        Self {
212            expected_type: None,
213            return_type: None,
214            scope: TypeContextScope::ArgumentOrOutsideFunction,
215            is_in_compare_like: false,
216        }
217    }
218
219    #[must_use]
220    pub const fn new_function(required_type: &'a Type) -> Self {
221        Self {
222            expected_type: Some(required_type),
223            return_type: Some(required_type),
224            scope: TypeContextScope::InsideFunction,
225            is_in_compare_like: false,
226        }
227    }
228
229    #[must_use]
230    pub const fn with_expected_type(&self, expected_type: Option<&'a Type>) -> Self {
231        Self {
232            expected_type,
233            return_type: self.return_type,
234            scope: self.scope,
235            is_in_compare_like: self.is_in_compare_like,
236        }
237    }
238
239    pub(crate) const fn we_know_expected_type(&self, found_type: &'a Type) -> Self {
240        self.with_expected_type(Some(found_type))
241    }
242
243    /// # Panics
244    ///
245    #[must_use]
246    pub const fn for_return(&self) -> Self {
247        Self {
248            expected_type: Some(self.return_type.unwrap()),
249            return_type: Some(self.return_type.unwrap()),
250            scope: TypeContextScope::ArgumentOrOutsideFunction,
251            is_in_compare_like: false,
252        }
253    }
254
255    #[must_use]
256    pub fn enter_function(&self, required_type: &'a Type) -> Self {
257        Self {
258            expected_type: Some(required_type),
259            return_type: Some(required_type),
260            scope: self.scope.enter_function(),
261            is_in_compare_like: false,
262        }
263    }
264
265    /// Creates a new scope when entering a loop
266    #[must_use]
267    pub fn enter_loop(&self) -> Self {
268        Self {
269            expected_type: self.expected_type,
270            return_type: self.return_type,
271            scope: self.scope.enter_loop(),
272            is_in_compare_like: self.is_in_compare_like,
273        }
274    }
275
276    /// Creates a new scope when entering a loop
277    #[must_use]
278    pub fn enter_compare(&self) -> Self {
279        Self {
280            expected_type: self.expected_type,
281            return_type: self.return_type,
282            scope: self.scope.enter_loop(),
283            is_in_compare_like: true,
284        }
285    }
286}
287
288#[derive(Debug, Eq, PartialEq)]
289pub enum BlockScopeMode {
290    Open,
291    Closed,
292}
293
294#[derive(Debug)]
295pub struct BlockScope {
296    mode: BlockScopeMode,
297    variables: SeqMap<String, VariableRef>,
298}
299
300impl Default for BlockScope {
301    fn default() -> Self {
302        Self::new()
303    }
304}
305
306impl BlockScope {
307    #[must_use]
308    pub fn new() -> Self {
309        Self {
310            mode: BlockScopeMode::Open,
311            variables: SeqMap::new(),
312        }
313    }
314}
315
316pub struct SharedState<'a> {
317    pub state: &'a mut ProgramState,
318    pub lookup_table: SymbolTable,
319    pub definition_table: SymbolTable,
320    pub modules: &'a Modules,
321    pub source_map: &'a SourceMap,
322    pub file_id: FileId,
323}
324
325impl<'a> SharedState<'a> {
326    #[must_use]
327    pub fn get_symbol_table(&'a self, path: &[String]) -> Option<&'a SymbolTable> {
328        if path.is_empty() {
329            return Some(&self.lookup_table);
330        }
331        self.get_module(path)
332            .map_or(None, |module| Some(&module.namespace.symbol_table))
333    }
334
335    #[must_use]
336    pub fn get_module(&'a self, path: &[String]) -> Option<&'a ModuleRef> {
337        let resolved_path = {
338            self.lookup_table.get_package_version(&path[0]).map_or_else(
339                || path.to_vec(),
340                |found_version| {
341                    let mut new_path = path.to_vec();
342                    let complete_name = format!("{}-{found_version}", path[0]);
343                    info!(path=?path[0], found_version, complete_name, "switched out version");
344                    new_path[0] = complete_name;
345                    new_path
346                },
347            )
348        };
349
350        if path.len() == 1 {
351            if let Some(module_ref) = self.lookup_table.get_module_link(&path[0]) {
352                return Some(module_ref);
353            }
354        }
355
356        if let Some(x) = self.modules.get(&resolved_path) {
357            return Some(x);
358        }
359
360        None
361    }
362}
363
364pub struct FunctionScopeState {
365    pub block_scope_stack: Vec<BlockScope>,
366    pub return_type: Type,
367}
368
369impl FunctionScopeState {
370    #[must_use]
371    pub fn new(return_type: Type) -> Self {
372        Self {
373            block_scope_stack: vec![BlockScope::new()],
374            return_type,
375        }
376    }
377}
378
379pub struct Analyzer<'a> {
380    pub shared: SharedState<'a>,
381    scope: FunctionScopeState,
382    global: FunctionScopeState,
383}
384
385impl<'a> Analyzer<'a> {
386    pub fn new(
387        state: &'a mut ProgramState,
388        modules: &'a Modules,
389        source_map: &'a SourceMap,
390        file_id: FileId,
391    ) -> Self {
392        let shared = SharedState {
393            state,
394            lookup_table: SymbolTable::default(),
395            definition_table: SymbolTable::default(),
396            modules,
397            source_map,
398            file_id,
399        };
400        Self {
401            scope: FunctionScopeState::new(Type::Unit),
402            global: FunctionScopeState::new(Type::Unit),
403            shared,
404        }
405    }
406
407    fn start_function(&mut self, return_type: Type) {
408        self.global.block_scope_stack = take(&mut self.scope.block_scope_stack);
409        self.scope = FunctionScopeState::new(return_type);
410    }
411
412    fn stop_function(&mut self) {
413        self.scope.block_scope_stack = take(&mut self.global.block_scope_stack);
414    }
415
416    fn analyze_if_expression(
417        &mut self,
418        condition: &swamp_script_ast::Expression,
419        true_expression: &swamp_script_ast::Expression,
420        maybe_false_expression: Option<&swamp_script_ast::Expression>,
421        context: &TypeContext,
422    ) -> Result<Expression, Error> {
423        let resolved_condition = self.analyze_bool_argument_expression(condition)?;
424
425        let branch_context = context.enter_compare();
426
427        let true_expr = self.analyze_expression(true_expression, &branch_context)?;
428        let resolved_true = Box::new(true_expr);
429
430        let mut detected = context.expected_type.cloned();
431        if detected.is_none() && !matches!(resolved_true.ty, Type::Never) {
432            detected = Some(resolved_true.ty.clone());
433        }
434
435        // Analyze the false branch if it exists
436        let else_statements = if let Some(false_expression) = maybe_false_expression {
437            let else_context = branch_context.with_expected_type(detected.as_ref());
438            let else_expr = self.analyze_expression(false_expression, &else_context)?;
439            if detected.is_none() && !matches!(else_expr.ty, Type::Never) {
440                detected = Some(else_expr.ty.clone());
441            }
442
443            Some(Box::new(else_expr))
444        } else {
445            None
446        };
447
448        Ok(self.create_expr(
449            ExpressionKind::If(resolved_condition, resolved_true, else_statements),
450            detected.unwrap(),
451            &condition.node,
452        ))
453    }
454
455    fn get_text(&self, ast_node: &swamp_script_ast::Node) -> &str {
456        let span = Span {
457            file_id: self.shared.file_id,
458            offset: ast_node.span.offset,
459            length: ast_node.span.length,
460        };
461        self.shared.source_map.get_span_source(
462            self.shared.file_id,
463            span.offset as usize,
464            span.length as usize,
465        )
466    }
467
468    fn get_text_resolved(&self, resolved_node: &Node) -> &str {
469        let span = Span {
470            file_id: self.shared.file_id,
471            offset: resolved_node.span.offset,
472            length: resolved_node.span.length,
473        };
474        self.shared.source_map.get_span_source(
475            self.shared.file_id,
476            span.offset as usize,
477            span.length as usize,
478        )
479    }
480
481    fn get_path(&self, ident: &swamp_script_ast::QualifiedTypeIdentifier) -> (Vec<String>, String) {
482        let path = ident
483            .module_path
484            .as_ref()
485            .map_or_else(Vec::new, |found_path| {
486                let mut v = Vec::new();
487                for p in &found_path.0 {
488                    v.push(self.get_text(p).to_string());
489                }
490                v
491            });
492        (path, self.get_text(&ident.name.0).to_string())
493    }
494
495    fn analyze_return_type(
496        &mut self,
497        function: &swamp_script_ast::Function,
498    ) -> Result<Type, Error> {
499        let ast_return_type = match function {
500            swamp_script_ast::Function::Internal(x) => &x.declaration.return_type,
501            swamp_script_ast::Function::External(x) => &x.return_type,
502        };
503
504        let resolved_return_type = match ast_return_type {
505            None => Type::Unit,
506            Some(x) => self.analyze_type(x)?,
507        };
508
509        Ok(resolved_return_type)
510    }
511
512    fn analyze_function_body_expression(
513        &mut self,
514        expression: &swamp_script_ast::Expression,
515        return_type: &Type,
516    ) -> Result<Expression, Error> {
517        let context = TypeContext::new_function(return_type);
518        let resolved_statement = self.analyze_expression(expression, &context)?;
519
520        Ok(resolved_statement)
521    }
522
523    fn analyze_maybe_type(
524        &mut self,
525        maybe_type: Option<&swamp_script_ast::Type>,
526    ) -> Result<Type, Error> {
527        let found_type = match maybe_type {
528            None => Type::Unit,
529            Some(ast_type) => self.analyze_type(ast_type)?,
530        };
531        Ok(found_type)
532    }
533
534    fn analyze_for_pattern(
535        &mut self,
536        pattern: &swamp_script_ast::ForPattern,
537        key_type: Option<&Type>,
538        value_type: &Type,
539    ) -> Result<ForPattern, Error> {
540        match pattern {
541            swamp_script_ast::ForPattern::Single(var) => {
542                let variable_ref = self.create_local_variable(
543                    &var.identifier,
544                    Option::from(&var.is_mut),
545                    value_type,
546                )?;
547                Ok(ForPattern::Single(variable_ref))
548            }
549            swamp_script_ast::ForPattern::Pair(first, second) => {
550                let found_key = key_type.unwrap();
551                let first_var_ref = self.create_local_variable(
552                    &first.identifier,
553                    Option::from(&first.is_mut),
554                    found_key,
555                )?;
556                let second_var_ref = self.create_local_variable(
557                    &second.identifier,
558                    Option::from(&second.is_mut),
559                    value_type,
560                )?;
561                Ok(ForPattern::Pair(first_var_ref, second_var_ref))
562            }
563        }
564    }
565
566    fn analyze_parameters(
567        &mut self,
568        parameters: &Vec<swamp_script_ast::Parameter>,
569    ) -> Result<Vec<TypeForParameter>, Error> {
570        let mut resolved_parameters = Vec::new();
571        for parameter in parameters {
572            let param_type = self.analyze_type(&parameter.param_type)?;
573            resolved_parameters.push(TypeForParameter {
574                name: self.get_text(&parameter.variable.name).to_string(),
575                resolved_type: param_type,
576                is_mutable: parameter.variable.is_mutable.is_some(),
577                node: Some(ParameterNode {
578                    is_mutable: self.to_node_option(Option::from(&parameter.variable.is_mutable)),
579                    name: self.to_node(&parameter.variable.name),
580                }),
581            });
582        }
583        Ok(resolved_parameters)
584    }
585
586    /// # Errors
587    ///
588    pub fn analyze_immutable_argument(
589        &mut self,
590        ast_expression: &swamp_script_ast::Expression,
591        expected_type: &Type,
592    ) -> Result<Expression, Error> {
593        let context = TypeContext::new_argument(expected_type);
594        self.analyze_expression(ast_expression, &context)
595    }
596
597    /// # Errors
598    ///
599    pub fn analyze_start_chain_expression_get_mutability(
600        &mut self,
601        ast_expression: &swamp_script_ast::Expression,
602        expected_type: Option<&Type>,
603    ) -> Result<(Expression, bool), Error> {
604        let any_parameter_context = TypeContext::new_unsure_argument(expected_type);
605        let resolved = self.analyze_expression(ast_expression, &any_parameter_context)?;
606        let mutability = match resolved.kind {
607            ExpressionKind::VariableAccess(ref resolved_variable) => resolved_variable.is_mutable(),
608            _ => false,
609        };
610
611        Ok((resolved, mutability))
612    }
613
614    /// # Errors
615    ///
616    #[allow(clippy::too_many_lines)]
617    pub fn analyze_expression(
618        &mut self,
619        ast_expression: &swamp_script_ast::Expression,
620        context: &TypeContext,
621    ) -> Result<Expression, Error> {
622        let expr = self.analyze_expression_internal(ast_expression, context)?;
623
624        let encountered_type = expr.ty.clone();
625
626        if let Some(found_expected_type) = context.expected_type {
627            if found_expected_type.compatible_with(&encountered_type) {
628                return Ok(expr);
629            }
630
631            let result = self.coerce_expression(
632                expr,
633                found_expected_type,
634                &encountered_type,
635                &ast_expression.node,
636            )?;
637
638            return Ok(result);
639        }
640
641        Ok(expr)
642    }
643
644    /// # Errors
645    ///
646    #[allow(clippy::too_many_lines)]
647    pub fn analyze_expression_internal(
648        &mut self,
649        ast_expression: &swamp_script_ast::Expression,
650        context: &TypeContext,
651    ) -> Result<Expression, Error> {
652        let expression = match &ast_expression.kind {
653            swamp_script_ast::ExpressionKind::Break => {
654                self.analyze_break(context, &ast_expression.node)?
655            }
656            swamp_script_ast::ExpressionKind::Return(optional_expression) => self.analyze_return(
657                context,
658                optional_expression.as_deref(),
659                &ast_expression.node,
660            )?,
661
662            swamp_script_ast::ExpressionKind::Continue => {
663                self.analyze_continue(context, &ast_expression.node)?
664            }
665
666            // Lookups
667            swamp_script_ast::ExpressionKind::PostfixChain(postfix_chain) => {
668                self.analyze_postfix_chain(postfix_chain)?
669            }
670
671            swamp_script_ast::ExpressionKind::IdentifierReference(variable) => {
672                self.analyze_identifier_reference(&variable.name)?
673            }
674            swamp_script_ast::ExpressionKind::VariableDefinition(
675                variable,
676                coerce_type,
677                source_expression,
678            ) => self.analyze_create_variable(
679                variable,
680                Option::from(coerce_type),
681                source_expression,
682            )?,
683
684            swamp_script_ast::ExpressionKind::VariableAssignment(variable, source_expression) => {
685                self.analyze_variable_assignment(variable, source_expression)?
686            }
687            swamp_script_ast::ExpressionKind::DestructuringAssignment(variables, expression) => {
688                self.analyze_destructuring(&ast_expression.node, variables, expression)?
689            }
690
691            swamp_script_ast::ExpressionKind::StaticFunctionReference(qualified_identifier) => {
692                self.analyze_static_function_access(qualified_identifier)?
693            }
694
695            swamp_script_ast::ExpressionKind::StaticMemberFunctionReference(
696                type_identifier,
697                member_name,
698            ) => self.analyze_static_member_access(type_identifier, member_name)?,
699
700            swamp_script_ast::ExpressionKind::ConstantReference(constant_identifier) => {
701                self.analyze_constant_access(constant_identifier)?
702            }
703
704            swamp_script_ast::ExpressionKind::FunctionReference(qualified_identifier) => {
705                self.analyze_static_function_access(qualified_identifier)?
706            }
707
708            swamp_script_ast::ExpressionKind::Assignment(location, source) => {
709                self.analyze_assignment(location, source)?
710            }
711            swamp_script_ast::ExpressionKind::CompoundAssignment(target, op, source) => {
712                self.analyze_assignment_compound(target, op, source)?
713            }
714
715            // Operator
716            swamp_script_ast::ExpressionKind::BinaryOp(resolved_a, operator, resolved_b) => {
717                let (resolved_op, result_type) =
718                    self.analyze_binary_op(resolved_a, operator, resolved_b)?;
719
720                self.create_expr(
721                    ExpressionKind::BinaryOp(resolved_op),
722                    result_type,
723                    &ast_expression.node,
724                )
725            }
726            swamp_script_ast::ExpressionKind::UnaryOp(operator, expression) => {
727                let (resolved_op, result_type) = self.analyze_unary_op(operator, expression)?;
728                self.create_expr(
729                    ExpressionKind::UnaryOp(resolved_op),
730                    result_type,
731                    &ast_expression.node,
732                )
733            }
734
735            swamp_script_ast::ExpressionKind::Block(expressions) => {
736                let (block, resulting_type) =
737                    self.analyze_block(&ast_expression.node, context, expressions)?;
738                self.create_expr(
739                    ExpressionKind::Block(block),
740                    resulting_type,
741                    &ast_expression.node,
742                )
743            }
744
745            swamp_script_ast::ExpressionKind::With(variable_bindings, expression) => {
746                self.analyze_with_expr(context, variable_bindings, expression)?
747            }
748
749            swamp_script_ast::ExpressionKind::When(variable_bindings, true_expr, else_expr) => {
750                self.analyze_when_expr(context, variable_bindings, true_expr, else_expr.as_deref())?
751            }
752
753            swamp_script_ast::ExpressionKind::InterpolatedString(string_parts) => {
754                let kind = ExpressionKind::InterpolatedString(
755                    self.analyze_interpolated_string(string_parts)?,
756                );
757
758                self.create_expr(kind, Type::String, &ast_expression.node)
759            }
760
761            // Creation
762            swamp_script_ast::ExpressionKind::StructLiteral(
763                struct_identifier,
764                fields,
765                has_rest,
766            ) => self.analyze_struct_instantiation(struct_identifier, fields, *has_rest)?,
767
768            swamp_script_ast::ExpressionKind::AnonymousStructLiteral(
769                fields,
770                rest_was_specified,
771            ) => self.analyze_anonymous_struct_literal(
772                &ast_expression.node,
773                fields,
774                *rest_was_specified,
775                context,
776            )?,
777
778            swamp_script_ast::ExpressionKind::Range(min_value, max_value, range_mode) => {
779                let range = self.analyze_range(min_value, max_value, range_mode)?;
780                self.create_expr(
781                    ExpressionKind::Range(Box::from(range.min), Box::from(range.max), range.mode),
782                    Type::Iterable(Box::from(Type::Int)),
783                    &ast_expression.node,
784                )
785            }
786
787            swamp_script_ast::ExpressionKind::Literal(literal) => {
788                let (literal, resolved_type) =
789                    self.analyze_literal(&ast_expression.node, literal, context)?;
790                self.create_expr(
791                    ExpressionKind::Literal(literal),
792                    resolved_type,
793                    &ast_expression.node,
794                )
795            }
796
797            swamp_script_ast::ExpressionKind::ForLoop(pattern, iterable_expression, statements) => {
798                let resolved_iterator =
799                    self.analyze_iterable(pattern.any_mut(), &iterable_expression.expression)?;
800
801                self.push_block_scope("for_loop");
802                let pattern = self.analyze_for_pattern(
803                    pattern,
804                    resolved_iterator.key_type.as_ref(),
805                    &resolved_iterator.value_type,
806                )?;
807                let resolved_statements =
808                    self.analyze_expression(statements, &context.enter_loop())?;
809                self.pop_block_scope("for_loop");
810                let resolved_type = resolved_statements.ty.clone();
811                self.create_expr(
812                    ExpressionKind::ForLoop(
813                        pattern,
814                        resolved_iterator,
815                        Box::from(resolved_statements),
816                    ),
817                    resolved_type,
818                    &ast_expression.node,
819                )
820            }
821            swamp_script_ast::ExpressionKind::WhileLoop(expression, statements) => {
822                let condition = self.analyze_bool_argument_expression(expression)?;
823                //self.push_block_scope("while_loop");
824                let resolved_statements =
825                    self.analyze_expression(statements, &context.enter_loop())?;
826                let resolved_type = resolved_statements.ty.clone();
827                //self.pop_block_scope("while_loop");
828
829                self.create_expr(
830                    ExpressionKind::WhileLoop(condition, Box::from(resolved_statements)),
831                    resolved_type,
832                    &ast_expression.node,
833                )
834            }
835
836            swamp_script_ast::ExpressionKind::If(
837                expression,
838                true_expression,
839                maybe_false_expression,
840            ) => self.analyze_if_expression(
841                expression,
842                true_expression,
843                maybe_false_expression.as_deref(),
844                context,
845            )?,
846
847            swamp_script_ast::ExpressionKind::Match(expression, arms) => {
848                let (match_expr, return_type) = self.analyze_match(expression, context, arms)?;
849                self.create_expr(
850                    ExpressionKind::Match(match_expr),
851                    return_type,
852                    &ast_expression.node,
853                )
854            }
855            swamp_script_ast::ExpressionKind::Guard(guard_expressions) => {
856                self.analyze_guard(&ast_expression.node, context, guard_expressions)?
857            }
858        };
859
860        //info!(ty=%expression.ty, kind=?expression.kind,  "resolved expression");
861
862        Ok(expression)
863    }
864
865    fn get_struct_type(
866        &mut self,
867        qualified_type_identifier: &swamp_script_ast::QualifiedTypeIdentifier,
868    ) -> Result<StructTypeRef, Error> {
869        let maybe_struct_type = self.analyze_named_type(qualified_type_identifier)?;
870        match maybe_struct_type {
871            Type::NamedStruct(struct_type) => Ok(struct_type),
872            _ => Err(self.create_err(
873                // For other Type variants that are not Struct
874                ErrorKind::UnknownStructTypeReference,
875                &qualified_type_identifier.name.0,
876            )),
877        }
878    }
879
880    // TODO: add to core symbol table
881    #[must_use]
882    pub fn check_built_in_type(s: &str) -> Option<Type> {
883        let found = match s {
884            "Int" => Type::Int,
885            "Float" => Type::Float,
886            "Bool" => Type::Bool,
887            "String" => Type::String,
888            _ => return None,
889        };
890        Some(found)
891    }
892
893    pub(crate) fn analyze_named_type(
894        &mut self,
895        type_name_to_find: &swamp_script_ast::QualifiedTypeIdentifier,
896    ) -> Result<Type, Error> {
897        let (path, name) = self.get_path(type_name_to_find);
898        // TODO: the built in should be put in the symbol table
899        if let Some(ty) = Self::check_built_in_type(&name) {
900            return Ok(ty);
901        }
902
903        let symbol = {
904            let maybe_symbol_table = self.shared.get_symbol_table(&path);
905            let symbol_table = maybe_symbol_table.ok_or_else(|| {
906                self.create_err(ErrorKind::UnknownSymbol, &type_name_to_find.name.0)
907            })?;
908            symbol_table
909                .get_symbol(&name)
910                .ok_or_else(|| {
911                    self.create_err(ErrorKind::UnknownSymbol, &type_name_to_find.name.0)
912                })?
913                .clone()
914        };
915
916        let mut analyzed_types = Vec::new();
917
918        for analyzed_type in &type_name_to_find.generic_params {
919            let ty = self.analyze_type(analyzed_type)?;
920
921            analyzed_types.push(ty);
922        }
923
924        let result_type = match symbol {
925            Symbol::Type(base_type) => base_type,
926            Symbol::Alias(alias_type) => alias_type.referenced_type.clone(),
927            _ => return Err(self.create_err(ErrorKind::UnknownSymbol, &type_name_to_find.name.0)),
928        };
929
930        Ok(result_type)
931    }
932
933    fn create_default_value_for_type(
934        &mut self,
935        node: &swamp_script_ast::Node,
936        field_type: &Type,
937    ) -> Result<Expression, Error> {
938        let kind = match field_type {
939            Type::Bool => ExpressionKind::Literal(Literal::BoolLiteral(false)),
940            Type::Int => ExpressionKind::Literal(Literal::IntLiteral(0)),
941            Type::Float => ExpressionKind::Literal(Literal::FloatLiteral(Fp::zero())),
942            Type::String => ExpressionKind::Literal(Literal::StringLiteral(String::new())),
943            Type::Array(array_type_ref) => {
944                ExpressionKind::Literal(Literal::Array(array_type_ref.clone(), vec![]))
945            }
946            Type::Tuple(tuple_type_ref) => {
947                let mut expressions = Vec::new();
948                for resolved_type in &tuple_type_ref.0 {
949                    let expr = self.create_default_value_for_type(node, resolved_type)?;
950                    expressions.push(expr);
951                }
952                ExpressionKind::Literal(Literal::TupleLiteral(tuple_type_ref.clone(), expressions))
953            }
954            Type::Map(map_type_ref) => {
955                ExpressionKind::Literal(Literal::Map(map_type_ref.clone(), vec![]))
956            }
957            Type::Optional(_optional_type) => ExpressionKind::Literal(Literal::NoneLiteral),
958
959            Type::NamedStruct(struct_ref) => self.create_default_static_call(node, struct_ref)?,
960            _ => {
961                return Err(
962                    self.create_err(ErrorKind::NoDefaultImplemented(field_type.clone()), node)
963                );
964            }
965        };
966
967        let expr = self.create_expr(kind, field_type.clone(), node);
968        Ok(expr)
969    }
970
971    fn create_default_static_call(
972        &mut self,
973        node: &swamp_script_ast::Node,
974        struct_ref_borrow: &StructTypeRef,
975    ) -> Result<ExpressionKind, Error> {
976        struct_ref_borrow
977            .borrow()
978            .functions
979            .get(&"default".to_string())
980            .map_or_else(
981                || {
982                    Err(self.create_err(
983                        ErrorKind::NoDefaultImplementedForStruct(struct_ref_borrow.clone()),
984                        node,
985                    ))
986                },
987                |function| {
988                    let kind = match &**function {
989                        Function::Internal(internal_function) => {
990                            ExpressionKind::InternalFunctionAccess(internal_function.clone())
991                        }
992                        Function::External(external_function) => {
993                            ExpressionKind::ExternalFunctionAccess(external_function.clone())
994                        }
995                    };
996
997                    let base_expr =
998                        self.create_expr(kind, Type::Function(function.signature().clone()), node);
999
1000                    let empty_call_postfix = Postfix {
1001                        node: self.to_node(node),
1002                        ty: *function.signature().return_type.clone(),
1003                        kind: PostfixKind::FunctionCall(vec![]),
1004                    };
1005
1006                    let kind =
1007                        ExpressionKind::PostfixChain(Box::new(base_expr), vec![empty_call_postfix]);
1008
1009                    Ok(kind)
1010                },
1011            )
1012    }
1013
1014    fn add_postfix(
1015        &mut self,
1016        vec: &mut Vec<Postfix>,
1017        kind: PostfixKind,
1018        ty: Type,
1019        node: &swamp_script_ast::Node,
1020    ) {
1021        let resolved_node = self.to_node(node);
1022        let postfix = Postfix {
1023            node: resolved_node,
1024            ty,
1025            kind,
1026        };
1027
1028        vec.push(postfix);
1029    }
1030
1031    /// # Panics
1032    ///
1033    /// # Errors
1034    ///
1035    pub fn analyze_struct_field(
1036        &mut self,
1037        field_name: &swamp_script_ast::Node,
1038        tv: Type,
1039    ) -> Result<(AnonymousStructType, usize, Type), Error> {
1040        let field_name_str = self.get_text(field_name).to_string();
1041
1042        let anon_struct_ref = match &tv {
1043            Type::NamedStruct(struct_type) => struct_type.borrow().anon_struct_type.clone(),
1044            Type::AnonymousStruct(anon_struct) => anon_struct.clone(),
1045            _ => return Err(self.create_err(ErrorKind::UnknownStructField, field_name)),
1046        };
1047
1048        if let Some(found_field) = anon_struct_ref
1049            .field_name_sorted_fields
1050            .get(&field_name_str)
1051        {
1052            let index = anon_struct_ref
1053                .field_name_sorted_fields
1054                .get_index(&field_name_str)
1055                .expect("checked earlier");
1056
1057            return Ok((
1058                anon_struct_ref.clone(),
1059                index,
1060                found_field.field_type.clone(),
1061            ));
1062        }
1063
1064        Err(self.create_err(ErrorKind::UnknownStructField, field_name))
1065    }
1066
1067    #[allow(clippy::too_many_lines)]
1068    fn analyze_postfix_chain(
1069        &mut self,
1070        chain: &swamp_script_ast::PostfixChain,
1071    ) -> Result<Expression, Error> {
1072        if let swamp_script_ast::ExpressionKind::StaticMemberFunctionReference(
1073            qualified_type_reference,
1074            member_name,
1075        ) = &chain.base.kind
1076        {
1077            if let Some(found_expr) =
1078                self.check_for_internal_static_call(qualified_type_reference, member_name, &[])?
1079            {
1080                return Ok(found_expr);
1081            }
1082        }
1083
1084        let (start, is_mutable) =
1085            self.analyze_start_chain_expression_get_mutability(&chain.base, None)?;
1086
1087        let mut tv = TypeWithMut {
1088            resolved_type: start.ty.clone(),
1089            is_mutable,
1090        };
1091
1092        let mut uncertain = false;
1093
1094        let mut suffixes = Vec::new();
1095
1096        for item in &chain.postfixes {
1097            match item {
1098                swamp_script_ast::Postfix::FieldAccess(field_name) => {
1099                    let (struct_type_ref, index, return_type) =
1100                        self.analyze_struct_field(&field_name.clone(), tv.resolved_type)?;
1101                    self.add_postfix(
1102                        &mut suffixes,
1103                        PostfixKind::StructField(struct_type_ref.clone(), index),
1104                        return_type.clone(),
1105                        field_name,
1106                    );
1107
1108                    tv.resolved_type = return_type.clone();
1109                    // keep previous `is_mutable`
1110                }
1111                swamp_script_ast::Postfix::MemberCall(member_name, ast_arguments) => {
1112                    let dereference = ast_arguments
1113                        .iter()
1114                        .map(|x| &x.expression)
1115                        .collect::<Vec<_>>();
1116                    if let Some(found_internal) = self.check_for_internal_member_call(
1117                        &tv.resolved_type,
1118                        tv.is_mutable,
1119                        member_name,
1120                        &dereference,
1121                    )? {
1122                        tv.resolved_type = found_internal.ty.clone();
1123                        tv.is_mutable = false;
1124                        suffixes.push(found_internal);
1125                    } else if let Type::NamedStruct(struct_type) = &tv.resolved_type.clone() {
1126                        let return_type = self.analyze_postfix_member_call(
1127                            struct_type,
1128                            tv.is_mutable,
1129                            member_name,
1130                            ast_arguments,
1131                            &mut suffixes,
1132                        )?;
1133
1134                        //self.add_postfix(&mut suffixes, kind, return_type.clone(), member_name);
1135                        tv.resolved_type = return_type.clone();
1136                        tv.is_mutable = false;
1137                    } else {
1138                        return Err(
1139                            self.create_err(ErrorKind::NotValidLocationStartingPoint, member_name)
1140                        );
1141                    }
1142                }
1143                swamp_script_ast::Postfix::FunctionCall(node, arguments) => {
1144                    if let Type::Function(signature) = &tv.resolved_type {
1145                        let resolved_node = self.to_node(node);
1146                        let resolved_arguments = self.analyze_and_verify_parameters(
1147                            &resolved_node,
1148                            &signature.parameters,
1149                            arguments,
1150                        )?;
1151                        self.add_postfix(
1152                            &mut suffixes,
1153                            PostfixKind::FunctionCall(resolved_arguments),
1154                            *signature.return_type.clone(),
1155                            node,
1156                        );
1157
1158                        tv.resolved_type = *signature.return_type.clone();
1159                        tv.is_mutable = false;
1160                    };
1161                }
1162
1163                swamp_script_ast::Postfix::Subscript(index_expr) => {
1164                    let collection_type = tv.resolved_type.clone();
1165                    match &collection_type {
1166                        Type::String => {
1167                            if let swamp_script_ast::ExpressionKind::Range(min, max, mode) =
1168                                &index_expr.kind
1169                            {
1170                                let range = self.analyze_range(min, max, mode)?;
1171
1172                                self.add_postfix(
1173                                    &mut suffixes,
1174                                    PostfixKind::StringRangeIndex(range),
1175                                    collection_type.clone(),
1176                                    &index_expr.node,
1177                                );
1178
1179                                tv.resolved_type = Type::String;
1180                            } else {
1181                                let int_argument_context = TypeContext::new_argument(&Type::Int);
1182                                let resolved_index_expr =
1183                                    self.analyze_expression(index_expr, &int_argument_context)?;
1184                                self.add_postfix(
1185                                    &mut suffixes,
1186                                    PostfixKind::StringIndex(resolved_index_expr),
1187                                    Type::String,
1188                                    &index_expr.node,
1189                                );
1190                            }
1191                            tv.resolved_type = Type::String;
1192                            tv.is_mutable = false;
1193                        }
1194
1195                        Type::Array(array_type_ref) => {
1196                            if let swamp_script_ast::ExpressionKind::Range(
1197                                min_expr,
1198                                max_expr,
1199                                mode,
1200                            ) = &index_expr.kind
1201                            {
1202                                let range = self.analyze_range(min_expr, max_expr, mode)?;
1203
1204                                self.add_postfix(
1205                                    &mut suffixes,
1206                                    PostfixKind::ArrayRangeIndex(array_type_ref.clone(), range),
1207                                    collection_type.clone(),
1208                                    &index_expr.node,
1209                                );
1210
1211                                tv.resolved_type = collection_type.clone();
1212                            } else {
1213                                let int_argument_context = TypeContext::new_argument(&Type::Int);
1214                                let resolved_index_expr =
1215                                    self.analyze_expression(index_expr, &int_argument_context)?;
1216                                self.add_postfix(
1217                                    &mut suffixes,
1218                                    PostfixKind::ArrayIndex(
1219                                        array_type_ref.clone(),
1220                                        resolved_index_expr,
1221                                    ),
1222                                    array_type_ref.item_type.clone(),
1223                                    &index_expr.node,
1224                                );
1225
1226                                tv.resolved_type = array_type_ref.item_type.clone();
1227                            }
1228
1229                            tv.is_mutable = false;
1230                        }
1231
1232                        Type::Map(map_type_ref) => {
1233                            let key_type_context =
1234                                TypeContext::new_argument(&map_type_ref.key_type);
1235                            let resolved_key_expr =
1236                                self.analyze_expression(index_expr, &key_type_context)?;
1237                            let return_type =
1238                                Type::Optional(Box::from(map_type_ref.value_type.clone()));
1239                            self.add_postfix(
1240                                &mut suffixes,
1241                                PostfixKind::MapIndex(map_type_ref.clone(), resolved_key_expr),
1242                                return_type.clone(),
1243                                &index_expr.node,
1244                            );
1245
1246                            tv.resolved_type = return_type;
1247                            tv.is_mutable = false;
1248                        }
1249
1250                        Type::Generic(base, generic_type_parameters) => match &**base {
1251                            Type::External(found_rust_type) => {
1252                                if found_rust_type.number == SPARSE_TYPE_ID {
1253                                    let sparse_id = self
1254                                        .shared
1255                                        .lookup_table
1256                                        .get_external_type("SparseId")
1257                                        .expect("SparseId is missing");
1258                                    let binding = Type::External(sparse_id.clone());
1259                                    let sparse_id_context = TypeContext::new_argument(&binding);
1260                                    let contained_type = &generic_type_parameters[0];
1261                                    let resolved_key =
1262                                        self.analyze_expression(index_expr, &sparse_id_context)?;
1263
1264                                    let return_type =
1265                                        Type::Optional(Box::new(contained_type.clone()));
1266
1267                                    self.add_postfix(
1268                                        &mut suffixes,
1269                                        PostfixKind::ExternalTypeIndexRef(
1270                                            found_rust_type.clone(),
1271                                            resolved_key,
1272                                        ),
1273                                        return_type.clone(),
1274                                        &index_expr.node,
1275                                    );
1276
1277                                    tv.resolved_type = return_type;
1278                                    tv.is_mutable = false;
1279                                } else {
1280                                    panic!("unknown generic type lookup")
1281                                }
1282                            }
1283                            _ => panic!("not supported"),
1284                        },
1285                        _ => {
1286                            return Err(self.create_err(
1287                                ErrorKind::ExpectedArray(collection_type),
1288                                &index_expr.node,
1289                            ));
1290                        }
1291                    }
1292                }
1293
1294                swamp_script_ast::Postfix::NoneCoalesce(default_expr) => {
1295                    let unwrapped_type = if let Type::Optional(unwrapped_type) = &tv.resolved_type {
1296                        unwrapped_type
1297                    } else if uncertain {
1298                        &tv.resolved_type
1299                    } else {
1300                        return Err(
1301                            self.create_err(ErrorKind::CanNotNoneCoalesce, &default_expr.node)
1302                        );
1303                    };
1304
1305                    let unwrapped_type_context = TypeContext::new_argument(unwrapped_type);
1306                    let resolved_default_expr =
1307                        self.analyze_expression(default_expr, &unwrapped_type_context)?;
1308                    self.add_postfix(
1309                        &mut suffixes,
1310                        PostfixKind::NoneCoalesce(resolved_default_expr),
1311                        unwrapped_type.clone(),
1312                        &default_expr.node,
1313                    );
1314                    tv.resolved_type = unwrapped_type.clone();
1315                    uncertain = false; // the chain is safe, because this will always solve None
1316                }
1317
1318                swamp_script_ast::Postfix::OptionUnwrap(option_node) => {
1319                    if let Type::Optional(unwrapped_type) = &tv.resolved_type {
1320                        uncertain = true;
1321                        self.add_postfix(
1322                            &mut suffixes,
1323                            PostfixKind::OptionUnwrap,
1324                            *unwrapped_type.clone(),
1325                            option_node,
1326                        );
1327                        tv.resolved_type = *unwrapped_type.clone();
1328                    } else {
1329                        return Err(self.create_err(ErrorKind::ExpectedOptional, option_node));
1330                    }
1331                }
1332            }
1333        }
1334
1335        if uncertain {
1336            if let Type::Optional(_) = tv.resolved_type {
1337            } else {
1338                tv.resolved_type = Type::Optional(Box::from(tv.resolved_type.clone()));
1339            }
1340        }
1341
1342        Ok(self.create_expr(
1343            ExpressionKind::PostfixChain(Box::new(start), suffixes),
1344            tv.resolved_type,
1345            &chain.base.node,
1346        ))
1347    }
1348
1349    fn analyze_bool_argument_expression(
1350        &mut self,
1351        expression: &swamp_script_ast::Expression,
1352    ) -> Result<BooleanExpression, Error> {
1353        let bool_context = TypeContext::new_argument(&Type::Bool);
1354        let resolved_expression = self.analyze_expression(expression, &bool_context)?;
1355        let expr_type = resolved_expression.ty.clone();
1356
1357        let bool_expression = match expr_type {
1358            Type::Bool => resolved_expression,
1359            Type::Optional(_) => self.create_expr(
1360                ExpressionKind::CoerceOptionToBool(Box::new(resolved_expression)),
1361                Type::Bool,
1362                &expression.node,
1363            ),
1364            _ => {
1365                return Err(self.create_err(ErrorKind::ExpectedBooleanExpression, &expression.node));
1366            }
1367        };
1368
1369        Ok(BooleanExpression {
1370            expression: Box::from(bool_expression),
1371        })
1372    }
1373
1374    fn analyze_iterable(
1375        &mut self,
1376        force_mut: Option<swamp_script_ast::Node>,
1377        expression: &swamp_script_ast::MutableOrImmutableExpression,
1378    ) -> Result<Iterable, Error> {
1379        let any_context = TypeContext::new_anything_argument();
1380        let resolved_expression: MutOrImmutableExpression = if force_mut.is_some() {
1381            let resolved_node = self.to_node(&force_mut.unwrap());
1382            MutOrImmutableExpression {
1383                expression_or_location: ArgumentExpressionOrLocation::Location(
1384                    self.analyze_to_location(
1385                        &expression.expression,
1386                        &any_context,
1387                        LocationSide::Rhs,
1388                    )?,
1389                ),
1390                is_mutable: Some(resolved_node),
1391            }
1392        } else {
1393            self.analyze_mut_or_immutable_expression(expression, &any_context, LocationSide::Rhs)?
1394        };
1395
1396        let resolved_type = &resolved_expression.ty().clone();
1397        let (key_type, value_type): (Option<Type>, Type) = match resolved_type {
1398            Type::Array(array_type) => (Some(Type::Int), array_type.item_type.clone()),
1399            Type::Map(map_type_ref) => (
1400                Some(map_type_ref.key_type.clone()),
1401                map_type_ref.value_type.clone(),
1402            ),
1403            Type::String => (Some(Type::Int), Type::String),
1404            Type::Iterable(item_type) => (None, *item_type.clone()),
1405            Type::Generic(_base_type, params) => {
1406                // TODO: HACK: We assume it is a container that iterates over the type parameters
1407                // TODO: HACK: We assume that it is a sparse map
1408                // TODO: HACK: Remove hardcoded number
1409                let rust_type_ref_for_id = self
1410                    .shared
1411                    .lookup_table
1412                    .get_external_type("SparseId")
1413                    .expect("SparseId was missing");
1414                let rust_id_type = Type::External(rust_type_ref_for_id.clone());
1415                (Some(rust_id_type), params[0].clone())
1416            }
1417            _ => return Err(self.create_err(ErrorKind::NotAnIterator, &expression.expression.node)),
1418        };
1419
1420        Ok(Iterable {
1421            key_type,
1422            value_type,
1423            resolved_expression: Box::new(resolved_expression),
1424        })
1425    }
1426
1427    fn analyze_argument_expressions(
1428        &mut self,
1429        expected_type: Option<&Type>,
1430        ast_expressions: &[swamp_script_ast::Expression],
1431    ) -> Result<Vec<Expression>, Error> {
1432        let mut resolved_expressions = Vec::new();
1433        let argument_expressions_context = TypeContext::new_unsure_argument(expected_type);
1434        for expression in ast_expressions {
1435            resolved_expressions
1436                .push(self.analyze_expression(expression, &argument_expressions_context)?);
1437        }
1438        Ok(resolved_expressions)
1439    }
1440
1441    fn analyze_block(
1442        &mut self,
1443        _node: &swamp_script_ast::Node,
1444        context: &TypeContext,
1445        ast_expressions: &[swamp_script_ast::Expression],
1446    ) -> Result<(Vec<Expression>, Type), Error> {
1447        if ast_expressions.is_empty() {
1448            return Ok((vec![], Type::Unit));
1449        }
1450
1451        self.push_block_scope("block");
1452
1453        let mut resolved_expressions = Vec::with_capacity(ast_expressions.len());
1454
1455        for expression in &ast_expressions[..ast_expressions.len() - 1] {
1456            let stmt_context = context.with_expected_type(Some(&Type::Unit));
1457            let expr = self.analyze_expression(expression, &stmt_context)?;
1458
1459            if matches!(expr.ty, Type::Never) {
1460                resolved_expressions.push(expr);
1461                return Ok((resolved_expressions, Type::Never));
1462            }
1463
1464            resolved_expressions.push(expr);
1465        }
1466
1467        // Process the last expression - it determines the block's type
1468        let last_expr =
1469            self.analyze_expression(&ast_expressions[ast_expressions.len() - 1], context)?;
1470        let last_type = last_expr.ty.clone();
1471        resolved_expressions.push(last_expr);
1472
1473        self.pop_block_scope("block");
1474
1475        Ok((resolved_expressions, last_type))
1476    }
1477
1478    fn analyze_interpolated_string(
1479        &mut self,
1480        string_parts: &[swamp_script_ast::StringPart],
1481    ) -> Result<Vec<StringPart>, Error> {
1482        let mut resolved_parts = Vec::new();
1483        for part in string_parts {
1484            let resolved_string_part = match part {
1485                swamp_script_ast::StringPart::Literal(string_node, processed_string) => {
1486                    StringPart::Literal(self.to_node(string_node), processed_string.to_string())
1487                }
1488                swamp_script_ast::StringPart::Interpolation(expression, format_specifier) => {
1489                    let any_context = TypeContext::new_anything_argument();
1490                    let expr = self.analyze_expression(expression, &any_context)?;
1491                    let resolved_format_specifier =
1492                        self.analyze_format_specifier(Option::from(format_specifier));
1493                    StringPart::Interpolation(expr, resolved_format_specifier)
1494                }
1495            };
1496
1497            resolved_parts.push(resolved_string_part);
1498        }
1499
1500        Ok(resolved_parts)
1501    }
1502
1503    pub(crate) fn analyze_static_function_access(
1504        &self,
1505        qualified_func_name: &swamp_script_ast::QualifiedIdentifier,
1506    ) -> Result<Expression, Error> {
1507        let path = self.get_module_path(qualified_func_name.module_path.as_ref());
1508        let function_name = self.get_text(&qualified_func_name.name);
1509
1510        if let Some(found_table) = self.shared.get_symbol_table(&path) {
1511            if let Some(found_func) = found_table.get_function(function_name) {
1512                let (kind, return_type) = match found_func {
1513                    FuncDef::Internal(internal_fn) => (
1514                        ExpressionKind::InternalFunctionAccess(internal_fn.clone()),
1515                        &internal_fn.signature.return_type,
1516                    ),
1517                    FuncDef::External(external_fn) => (
1518                        ExpressionKind::ExternalFunctionAccess(external_fn.clone()),
1519                        &external_fn.signature.return_type,
1520                    ),
1521                    // Can not have a reference to an intrinsic function
1522                    FuncDef::Intrinsic(_) => {
1523                        return Err(
1524                            self.create_err(ErrorKind::UnknownFunction, &qualified_func_name.name)
1525                        );
1526                    }
1527                };
1528
1529                return Ok(self.create_expr(kind, *return_type.clone(), &qualified_func_name.name));
1530            }
1531        }
1532        Err(self.create_err(ErrorKind::UnknownFunction, &qualified_func_name.name))
1533    }
1534
1535    // The ast assumes it is something similar to a variable, but it can be a function reference as well.
1536    fn analyze_identifier_reference(
1537        &self,
1538        var_node: &swamp_script_ast::Node,
1539    ) -> Result<Expression, Error> {
1540        let text = self.get_text(var_node);
1541
1542        // Must check variable first, since that is more intuitive for the user.
1543        // local variables before other functions
1544        if let Some(found_variable) = self.try_find_variable(var_node) {
1545            return Ok(self.create_expr(
1546                ExpressionKind::VariableAccess(found_variable.clone()),
1547                found_variable.resolved_type.clone(),
1548                var_node,
1549            ));
1550        }
1551
1552        if let Some(found_symbol) = self.shared.lookup_table.get_symbol(text) {
1553            let expr = match found_symbol {
1554                Symbol::FunctionDefinition(func) => match func {
1555                    FuncDef::External(found_external_function) => self.create_expr(
1556                        ExpressionKind::ExternalFunctionAccess(found_external_function.clone()),
1557                        Type::Function(found_external_function.signature.clone()),
1558                        var_node,
1559                    ),
1560                    FuncDef::Internal(found_internal_function) => self.create_expr(
1561                        ExpressionKind::InternalFunctionAccess(found_internal_function.clone()),
1562                        Type::Function(found_internal_function.signature.clone()),
1563                        var_node,
1564                    ),
1565                    FuncDef::Intrinsic(_) => todo!(),
1566                },
1567
1568                _ => {
1569                    return Err(self.create_err(ErrorKind::UnknownIdentifier, var_node));
1570                }
1571            };
1572            return Ok(expr);
1573        }
1574
1575        Err(self.create_err(ErrorKind::UnknownIdentifier, var_node))
1576    }
1577    fn analyze_usize_index(
1578        &mut self,
1579        usize_expression: &swamp_script_ast::Expression,
1580    ) -> Result<Expression, Error> {
1581        let int_context = TypeContext::new_argument(&Type::Int);
1582        let lookup_expression = self.analyze_expression(usize_expression, &int_context)?;
1583        let lookup_resolution = lookup_expression.ty.clone();
1584
1585        match &lookup_resolution {
1586            Type::Int => {}
1587            _ => Err(self.create_err(
1588                ErrorKind::ArrayIndexMustBeInt(lookup_resolution),
1589                &usize_expression.node,
1590            ))?,
1591        }
1592
1593        Ok(lookup_expression)
1594    }
1595
1596    fn analyze_array_type_helper(
1597        &mut self,
1598        node: &swamp_script_ast::Node,
1599        items: &[swamp_script_ast::Expression],
1600        expected_type: Option<&Type>,
1601    ) -> Result<(ArrayTypeRef, Vec<Expression>), Error> {
1602        let expressions = self.analyze_argument_expressions(None, items)?;
1603        let item_type = if expressions.is_empty() {
1604            if let Some(found_expected_type) = expected_type {
1605                info!(?found_expected_type, "found array type");
1606                if let Type::Array(found) = found_expected_type {
1607                    found.item_type.clone()
1608                } else {
1609                    return Err(self.create_err(ErrorKind::NotAnArray, node));
1610                }
1611            } else {
1612                return Err(self.create_err(ErrorKind::NotAnArray, node));
1613            }
1614        } else {
1615            expressions[0].ty.clone()
1616        };
1617
1618        let array_type = ArrayType { item_type };
1619
1620        let array_type_ref = Rc::new(array_type);
1621
1622        Ok((array_type_ref, expressions))
1623    }
1624
1625    fn push_block_scope(&mut self, _debug_str: &str) {
1626        self.scope.block_scope_stack.push(BlockScope {
1627            mode: BlockScopeMode::Open,
1628            variables: SeqMap::default(),
1629        });
1630    }
1631
1632    fn pop_block_scope(&mut self, _debug_str: &str) {
1633        self.scope.block_scope_stack.pop();
1634    }
1635
1636    fn push_closed_block_scope(&mut self) {
1637        self.scope.block_scope_stack.push(BlockScope {
1638            mode: BlockScopeMode::Closed,
1639            variables: SeqMap::default(),
1640        });
1641    }
1642
1643    fn pop_closed_block_scope(&mut self) {
1644        self.scope.block_scope_stack.pop();
1645    }
1646
1647    fn analyze_enum_variant_ref(
1648        &self,
1649        qualified_type_identifier: &swamp_script_ast::QualifiedTypeIdentifier,
1650        variant_name: &swamp_script_ast::LocalTypeIdentifier,
1651    ) -> Result<EnumVariantTypeRef, Error> {
1652        let variant_name_string = self.get_text(&variant_name.0).to_string();
1653        self.get_enum_variant_type(qualified_type_identifier, &variant_name_string)
1654    }
1655
1656    fn analyze_match(
1657        &mut self,
1658        scrutinee: &swamp_script_ast::MutableOrImmutableExpression,
1659        default_context: &TypeContext,
1660        arms: &Vec<swamp_script_ast::MatchArm>,
1661    ) -> Result<(Match, Type), Error> {
1662        let mut known_type = default_context.expected_type.cloned();
1663        let own_context = default_context.clone();
1664        // Analyze the scrutinee with no specific expected type
1665        let scrutinee_context = TypeContext::new_anything_argument();
1666        let resolved_scrutinee = self.analyze_mut_or_immutable_expression(
1667            scrutinee,
1668            &scrutinee_context,
1669            LocationSide::Rhs,
1670        )?;
1671        let scrutinee_type = resolved_scrutinee.ty().clone();
1672
1673        // Ensure we have at least one arm
1674        if arms.is_empty() {
1675            return Err(self.create_err(ErrorKind::EmptyMatch, &scrutinee.expression.node));
1676        }
1677
1678        let mut resolved_arms = Vec::with_capacity(arms.len());
1679
1680        for arm in arms {
1681            let (resolved_arm, _anyone_wants_mutable) = self.analyze_arm(
1682                arm,
1683                &resolved_scrutinee,
1684                &own_context.with_expected_type(known_type.as_ref()),
1685                &scrutinee_type,
1686            )?;
1687
1688            if known_type.is_none() && !matches!(resolved_arm.expression.ty, Type::Never) {
1689                known_type = Some(resolved_arm.expression.ty.clone());
1690            }
1691            resolved_arms.push(resolved_arm);
1692        }
1693
1694        known_type.map_or_else(
1695            || {
1696                Err(self.create_err(
1697                    ErrorKind::MatchArmsMustHaveTypes,
1698                    &scrutinee.expression.node,
1699                ))
1700            },
1701            |encountered_type| {
1702                if matches!(encountered_type, Type::Never) {
1703                    Err(self.create_err(
1704                        ErrorKind::IncompatibleTypes(encountered_type.clone(), encountered_type),
1705                        &scrutinee.expression.node,
1706                    ))
1707                } else {
1708                    Ok((
1709                        Match {
1710                            expression: Box::new(resolved_scrutinee),
1711                            arms: resolved_arms,
1712                        },
1713                        encountered_type,
1714                    ))
1715                }
1716            },
1717        )
1718    }
1719
1720    fn analyze_arm(
1721        &mut self,
1722        arm: &swamp_script_ast::MatchArm,
1723        _expression: &MutOrImmutableExpression,
1724        type_context: &TypeContext,
1725        expected_condition_type: &Type,
1726    ) -> Result<(MatchArm, bool), Error> {
1727        let (resolved_pattern, scope_was_pushed, anyone_wants_mutable) =
1728            self.analyze_pattern(&arm.pattern, expected_condition_type)?;
1729
1730        let resolved_expression = self.analyze_expression(&arm.expression, type_context)?;
1731        if scope_was_pushed {
1732            self.pop_block_scope("analyze_arm");
1733        }
1734
1735        let resolved_type = resolved_expression.ty.clone();
1736
1737        Ok((
1738            MatchArm {
1739                pattern: resolved_pattern,
1740                expression: Box::from(resolved_expression),
1741                expression_type: resolved_type,
1742            },
1743            anyone_wants_mutable,
1744        ))
1745    }
1746
1747    fn str_to_int(text: &str) -> Result<i32, ParseIntError> {
1748        text.parse::<i32>()
1749    }
1750
1751    fn str_to_float(text: &str) -> Result<f32, ParseFloatError> {
1752        text.parse::<f32>()
1753    }
1754
1755    fn analyze_pattern_literal(
1756        &mut self,
1757        node: &swamp_script_ast::Node,
1758        ast_literal: &swamp_script_ast::LiteralKind,
1759        expected_condition_type: &Type,
1760    ) -> Result<NormalPattern, Error> {
1761        let required_condition_type_context = TypeContext::new_argument(expected_condition_type);
1762        let (resolved_literal, literal_type) =
1763            self.analyze_literal(node, ast_literal, &required_condition_type_context)?;
1764
1765        if !literal_type.compatible_with(expected_condition_type) {
1766            return Err(self.create_err(
1767                ErrorKind::IncompatibleTypes(literal_type, expected_condition_type.clone()),
1768                node,
1769            ));
1770        }
1771
1772        Ok(NormalPattern::Literal(resolved_literal))
1773    }
1774
1775    const fn to_node(&self, node: &swamp_script_ast::Node) -> Node {
1776        Node {
1777            span: Span {
1778                file_id: self.shared.file_id,
1779                offset: node.span.offset,
1780                length: node.span.length,
1781            },
1782        }
1783    }
1784
1785    fn get_module_path(&self, module_path: Option<&swamp_script_ast::ModulePath>) -> Vec<String> {
1786        module_path.as_ref().map_or_else(Vec::new, |found| {
1787            let mut strings = Vec::new();
1788            for path_item in &found.0 {
1789                strings.push(self.get_text(path_item).to_string());
1790            }
1791            strings
1792        })
1793    }
1794
1795    fn get_enum_variant_type(
1796        &self,
1797        qualified_type_identifier: &swamp_script_ast::QualifiedTypeIdentifier,
1798        variant_name: &str,
1799    ) -> Result<EnumVariantTypeRef, Error> {
1800        let (symbol_table, enum_name) =
1801            self.get_symbol_table_and_name(qualified_type_identifier)?;
1802        symbol_table
1803            .get_enum_variant_type(&enum_name, variant_name)
1804            .ok_or_else(|| {
1805                self.create_err(
1806                    ErrorKind::UnknownEnumVariantType,
1807                    &qualified_type_identifier.name.0,
1808                )
1809            })
1810    }
1811
1812    pub(crate) fn get_symbol_table_and_name(
1813        &self,
1814        type_identifier: &swamp_script_ast::QualifiedTypeIdentifier,
1815    ) -> Result<(&SymbolTable, String), Error> {
1816        let path = self.get_module_path(type_identifier.module_path.as_ref());
1817        let name = self.get_text(&type_identifier.name.0).to_string();
1818
1819        let maybe_symbol_table = self.shared.get_symbol_table(&path);
1820        maybe_symbol_table.map_or_else(
1821            || Err(self.create_err(ErrorKind::UnknownModule, &type_identifier.name.0)),
1822            |symbol_table| Ok((symbol_table, name)),
1823        )
1824    }
1825
1826    const fn analyze_compound_operator(
1827        &self,
1828        ast_operator: &swamp_script_ast::CompoundOperator,
1829    ) -> CompoundOperator {
1830        let resolved_node = self.to_node(&ast_operator.node);
1831        let resolved_kind = match ast_operator.kind {
1832            swamp_script_ast::CompoundOperatorKind::Add => CompoundOperatorKind::Add,
1833            swamp_script_ast::CompoundOperatorKind::Sub => CompoundOperatorKind::Sub,
1834            swamp_script_ast::CompoundOperatorKind::Mul => CompoundOperatorKind::Mul,
1835            swamp_script_ast::CompoundOperatorKind::Div => CompoundOperatorKind::Div,
1836            swamp_script_ast::CompoundOperatorKind::Modulo => CompoundOperatorKind::Modulo,
1837        };
1838
1839        CompoundOperator {
1840            node: resolved_node,
1841            kind: resolved_kind,
1842        }
1843    }
1844
1845    const fn to_node_option(&self, maybe_node: Option<&swamp_script_ast::Node>) -> Option<Node> {
1846        match maybe_node {
1847            None => None,
1848            Some(node) => Some(self.to_node(node)),
1849        }
1850    }
1851
1852    const fn analyze_format_specifier(
1853        &self,
1854        ast_format_specifier: Option<&swamp_script_ast::FormatSpecifier>,
1855    ) -> Option<FormatSpecifier> {
1856        let f = match ast_format_specifier {
1857            None => return None,
1858            Some(ast_format) => match ast_format {
1859                swamp_script_ast::FormatSpecifier::LowerHex(node) => FormatSpecifier {
1860                    node: self.to_node(node),
1861                    kind: FormatSpecifierKind::LowerHex,
1862                },
1863                swamp_script_ast::FormatSpecifier::UpperHex(node) => FormatSpecifier {
1864                    node: self.to_node(node),
1865                    kind: FormatSpecifierKind::UpperHex,
1866                },
1867                swamp_script_ast::FormatSpecifier::Binary(node) => FormatSpecifier {
1868                    node: self.to_node(node),
1869                    kind: FormatSpecifierKind::Binary,
1870                },
1871                swamp_script_ast::FormatSpecifier::Float(node) => FormatSpecifier {
1872                    node: self.to_node(node),
1873                    kind: FormatSpecifierKind::Float,
1874                },
1875                swamp_script_ast::FormatSpecifier::Precision(value, node, x) => {
1876                    let (precision_type, precision_node) = match x {
1877                        swamp_script_ast::PrecisionType::Float(node) => {
1878                            (PrecisionType::Float, self.to_node(node))
1879                        }
1880                        swamp_script_ast::PrecisionType::String(node) => {
1881                            (PrecisionType::String, self.to_node(node))
1882                        }
1883                    };
1884                    FormatSpecifier {
1885                        node: self.to_node(node),
1886                        kind: FormatSpecifierKind::Precision(
1887                            *value,
1888                            precision_node,
1889                            precision_type,
1890                        ),
1891                    }
1892                }
1893            },
1894        };
1895
1896        Some(f)
1897    }
1898
1899    fn analyze_with_expr(
1900        &mut self,
1901        context: &TypeContext,
1902        variables: &[swamp_script_ast::VariableBinding],
1903        expression: &swamp_script_ast::Expression,
1904    ) -> Result<Expression, Error> {
1905        let mut variable_expressions = Vec::new();
1906
1907        for variable in variables {
1908            let any_context = TypeContext::new_anything_argument();
1909            let var = self.analyze_mut_or_immutable_expression(
1910                &variable.expression,
1911                &any_context,
1912                LocationSide::Rhs,
1913            )?;
1914            variable_expressions.push(var);
1915        }
1916
1917        self.push_closed_block_scope();
1918        let mut expressions = Vec::new();
1919        for (variable_binding, resolved_expression) in variables.iter().zip(variable_expressions) {
1920            let initialize_variable_expression = self.create_variable_binding_for_with(
1921                &variable_binding.variable,
1922                resolved_expression,
1923            )?;
1924            expressions.push(initialize_variable_expression);
1925        }
1926
1927        let resolved_expression = self.analyze_expression(expression, context)?;
1928        let block_type = resolved_expression.ty.clone();
1929        expressions.push(resolved_expression);
1930
1931        let block_expression_kind = ExpressionKind::Block(expressions);
1932        self.pop_closed_block_scope();
1933
1934        let block_expr = self.create_expr(block_expression_kind, block_type, &expression.node);
1935        Ok(block_expr)
1936    }
1937
1938    fn analyze_when_expr(
1939        &mut self,
1940        context: &TypeContext,
1941        variables: &[swamp_script_ast::WhenBinding],
1942        true_expr: &swamp_script_ast::Expression,
1943        else_expr: Option<&swamp_script_ast::Expression>,
1944    ) -> Result<Expression, Error> {
1945        // Since we are making new variable bindings, we have to push a scope for them
1946        self.push_block_scope("when");
1947        let mut bindings = Vec::new();
1948        for variable_binding in variables {
1949            let mut_expr = if let Some(found_expr) = &variable_binding.expression {
1950                let any_context = TypeContext::new_anything_argument();
1951                self.analyze_mut_or_immutable_expression(
1952                    found_expr,
1953                    &any_context,
1954                    LocationSide::Rhs,
1955                )?
1956            } else {
1957                let same_var = self.find_variable(&variable_binding.variable)?;
1958
1959                let is_mutable = same_var.mutable_node.clone();
1960                let argument_expression = if same_var.is_mutable() {
1961                    let loc = SingleLocationExpression {
1962                        kind: SingleLocationExpressionKind::MutVariableRef,
1963                        node: self.to_node(&variable_binding.variable.name),
1964                        ty: same_var.resolved_type.clone(),
1965                        starting_variable: same_var,
1966                        access_chain: vec![],
1967                    };
1968                    ArgumentExpressionOrLocation::Location(loc)
1969                } else {
1970                    let generated_expr_kind = ExpressionKind::VariableAccess(same_var.clone());
1971                    let generated_expression = self.create_expr(
1972                        generated_expr_kind,
1973                        same_var.resolved_type.clone(),
1974                        &variable_binding.variable.name,
1975                    );
1976                    ArgumentExpressionOrLocation::Expression(generated_expression)
1977                };
1978
1979                MutOrImmutableExpression {
1980                    expression_or_location: argument_expression,
1981                    is_mutable,
1982                }
1983            };
1984
1985            let ty = mut_expr.ty();
1986
1987            if let Type::Optional(found_ty) = ty {
1988                let variable_ref = self.create_variable(&variable_binding.variable, found_ty)?;
1989
1990                let binding = WhenBinding {
1991                    variable: variable_ref,
1992                    expr: mut_expr,
1993                };
1994                bindings.push(binding);
1995            } else {
1996                return Err(self.create_err(ErrorKind::ExpectedOptional, &true_expr.node));
1997            }
1998        }
1999
2000        let resolved_true = self.analyze_expression(true_expr, context)?;
2001        let block_type = resolved_true.ty.clone();
2002
2003        self.pop_block_scope("when");
2004
2005        let maybe_resolved_else = if let Some(found_else) = else_expr {
2006            let block_type_for_true_context = context.we_know_expected_type(&block_type);
2007            Some(Box::new(self.analyze_expression(
2008                found_else,
2009                &block_type_for_true_context,
2010            )?))
2011        } else {
2012            None
2013        };
2014
2015        let when_kind =
2016            ExpressionKind::When(bindings, Box::from(resolved_true), maybe_resolved_else);
2017
2018        let block_expr = self.create_expr(when_kind, block_type, &true_expr.node);
2019        Ok(block_expr)
2020    }
2021
2022    fn analyze_guard(
2023        &mut self,
2024        node: &swamp_script_ast::Node,
2025        context: &TypeContext,
2026        guard_expressions: &Vec<swamp_script_ast::GuardExpr>,
2027    ) -> Result<Expression, Error> {
2028        let mut guards = Vec::new();
2029        let mut found_wildcard = None;
2030        let mut detected_type = context.expected_type.cloned();
2031
2032        for guard in guard_expressions {
2033            let resolved_condition = match &guard.clause {
2034                swamp_script_ast::GuardClause::Wildcard(x) => {
2035                    if found_wildcard.is_some() {
2036                        return Err(
2037                            self.create_err(ErrorKind::GuardCanNotHaveMultipleWildcards, node)
2038                        );
2039                    }
2040                    found_wildcard = Some(x);
2041                    None
2042                }
2043                swamp_script_ast::GuardClause::Expression(clause_expr) => {
2044                    if found_wildcard.is_some() {
2045                        return Err(self.create_err(ErrorKind::WildcardMustBeLastInGuard, node));
2046                    }
2047                    Some(self.analyze_bool_argument_expression(clause_expr)?)
2048                }
2049            };
2050
2051            let resolved_result = self.analyze_expression(
2052                &guard.result,
2053                &context.with_expected_type(detected_type.as_ref()),
2054            )?;
2055            let ty = resolved_result.ty.clone();
2056            if detected_type.is_none() && !matches!(ty, Type::Never) {
2057                detected_type = Some(ty.clone());
2058            }
2059
2060            guards.push(Guard {
2061                condition: resolved_condition,
2062                result: resolved_result,
2063            });
2064        }
2065
2066        if found_wildcard.is_none() {
2067            return Err(self.create_err(ErrorKind::GuardMustHaveWildcard, node));
2068        }
2069
2070        let kind = ExpressionKind::Guard(guards);
2071
2072        detected_type.map_or_else(
2073            || Err(self.create_err(ErrorKind::GuardHasNoType, node)),
2074            |found_expecting_type| {
2075                let expr = self.create_expr(kind, found_expecting_type, node);
2076                Ok(expr)
2077            },
2078        )
2079    }
2080
2081    /// # Errors
2082    ///
2083    pub fn analyze_variable_assignment(
2084        &mut self,
2085        variable: &swamp_script_ast::Variable,
2086        source_expression: &swamp_script_ast::MutableOrImmutableExpression,
2087    ) -> Result<Expression, Error> {
2088        let any_argument_context = TypeContext::new_anything_argument();
2089        let source_expr = self.analyze_mut_or_immutable_expression(
2090            source_expression,
2091            &any_argument_context,
2092            LocationSide::Rhs,
2093        )?;
2094        let ty = source_expr.ty().clone();
2095        if !ty.is_concrete() {
2096            return Err(self.create_err(ErrorKind::VariableTypeMustBeConcrete, &variable.name));
2097        }
2098
2099        let maybe_found_variable = self.try_find_variable(&variable.name);
2100
2101        let kind: ExpressionKind = if let Some(found_var) = maybe_found_variable {
2102            if !found_var.is_mutable() {
2103                return Err(self.create_err(ErrorKind::VariableIsNotMutable, &variable.name));
2104            }
2105            if !found_var.resolved_type.assignable_type(&ty) {
2106                return Err(self.create_err(
2107                    ErrorKind::IncompatibleTypes(found_var.resolved_type.clone(), ty.clone()),
2108                    &variable.name,
2109                ));
2110            }
2111            ExpressionKind::VariableReassignment(found_var, Box::from(source_expr))
2112        } else {
2113            let new_var = self.create_variable(variable, &ty)?;
2114            ExpressionKind::VariableDefinition(new_var, Box::from(source_expr))
2115        };
2116
2117        Ok(self.create_expr(kind, Type::Unit, &variable.name))
2118    }
2119
2120    fn analyze_create_variable(
2121        &mut self,
2122        var: &swamp_script_ast::Variable,
2123        annotation_type: Option<&swamp_script_ast::Type>,
2124        source_expression: &swamp_script_ast::MutableOrImmutableExpression,
2125    ) -> Result<Expression, Error> {
2126        let ty = if let Some(found_ast_type) = annotation_type {
2127            Some(self.analyze_type(found_ast_type)?)
2128        } else {
2129            None
2130        };
2131
2132        let unsure_arg_context = TypeContext::new_unsure_argument(ty.as_ref());
2133
2134        let resolved_source = self.analyze_mut_or_immutable_expression(
2135            source_expression,
2136            &unsure_arg_context,
2137            LocationSide::Rhs,
2138        )?;
2139
2140        let var_ref = self.create_local_variable(
2141            &var.name,
2142            Option::from(&var.is_mutable),
2143            &resolved_source.ty(),
2144        )?;
2145
2146        let resolved_type = resolved_source.ty().clone();
2147        assert_ne!(resolved_type, Type::Unit);
2148        let kind = ExpressionKind::VariableDefinition(var_ref, Box::from(resolved_source));
2149
2150        let resolved_expr = self.create_expr(kind, Type::Unit, &var.name);
2151
2152        Ok(resolved_expr)
2153    }
2154
2155    fn add_location_item(
2156        &mut self,
2157        vec: &mut Vec<LocationAccess>,
2158        kind: LocationAccessKind,
2159        ty: Type,
2160        ast_node: &swamp_script_ast::Node,
2161    ) {
2162        let resolved_node = self.to_node(ast_node);
2163        let postfix = LocationAccess {
2164            node: resolved_node.clone(),
2165            ty,
2166            kind,
2167        };
2168
2169        vec.push(postfix);
2170    }
2171
2172    #[allow(clippy::too_many_lines)]
2173    fn analyze_chain_to_location(
2174        &mut self,
2175        chain: &swamp_script_ast::PostfixChain,
2176        context: &TypeContext,
2177        location_side: LocationSide,
2178    ) -> Result<SingleLocationExpression, Error> {
2179        let mut items = Vec::new();
2180
2181        let nothing_context =
2182            TypeContext::new(None, None, TypeContextScope::ArgumentOrOutsideFunction);
2183
2184        let base_expr = self.analyze_expression(&chain.base, &nothing_context)?;
2185        let ExpressionKind::VariableAccess(start_variable) = base_expr.kind else {
2186            return Err(self.create_err(ErrorKind::NotValidLocationStartingPoint, &chain.base.node));
2187        };
2188
2189        if !start_variable.is_mutable() {
2190            return Err(self.create_err(ErrorKind::VariableIsNotMutable, &chain.base.node));
2191        }
2192
2193        let mut ty = start_variable.resolved_type.clone();
2194        for (i, item) in chain.postfixes.iter().enumerate() {
2195            match &item {
2196                swamp_script_ast::Postfix::FieldAccess(field_name_node) => {
2197                    //let field_name_resolved = self.to_node(field_name_node)
2198                    let (struct_type_ref, index, return_type) =
2199                        self.analyze_struct_field(field_name_node, ty)?;
2200                    self.add_location_item(
2201                        &mut items,
2202                        LocationAccessKind::FieldIndex(struct_type_ref.clone(), index),
2203                        return_type.clone(),
2204                        field_name_node,
2205                    );
2206
2207                    ty = return_type.clone();
2208                }
2209                swamp_script_ast::Postfix::Subscript(lookup_expr) => {
2210                    let is_range = if let swamp_script_ast::ExpressionKind::Range(min, max, mode) =
2211                        &lookup_expr.kind
2212                    {
2213                        Some(self.analyze_range(min, max, mode)?)
2214                    } else {
2215                        None
2216                    };
2217                    match &ty {
2218                        Type::String => {
2219                            if let Some(range) = is_range {
2220                                self.add_location_item(
2221                                    &mut items,
2222                                    LocationAccessKind::StringRange(range),
2223                                    Type::String,
2224                                    &lookup_expr.node,
2225                                );
2226                            } else {
2227                                let index_expr_context = TypeContext::new_argument(&Type::Int);
2228                                let index_expr =
2229                                    self.analyze_expression(lookup_expr, &index_expr_context)?; // TODO: Support slice (range)
2230                                self.add_location_item(
2231                                    &mut items,
2232                                    LocationAccessKind::StringIndex(index_expr),
2233                                    Type::String,
2234                                    &lookup_expr.node,
2235                                );
2236                            }
2237                            ty = Type::String;
2238                        }
2239
2240                        Type::Array(array_type) => {
2241                            let int_argument_context = TypeContext::new_argument(&Type::Int);
2242                            let index_expr =
2243                                self.analyze_expression(lookup_expr, &int_argument_context)?; // TODO: Support slice (range)
2244                            self.add_location_item(
2245                                &mut items,
2246                                LocationAccessKind::ArrayIndex(array_type.clone(), index_expr),
2247                                array_type.item_type.clone(),
2248                                &lookup_expr.node,
2249                            );
2250                            ty = array_type.item_type.clone();
2251                        }
2252
2253                        Type::Map(map_type) => {
2254                            let key_type_argument_context =
2255                                TypeContext::new_argument(&map_type.key_type);
2256                            let key_expr =
2257                                self.analyze_expression(lookup_expr, &key_type_argument_context)?;
2258                            let is_last = i == chain.postfixes.len() - 1;
2259                            let allow_auto_insert = is_last && location_side == LocationSide::Lhs;
2260                            let (kind, lookup_type) = if allow_auto_insert {
2261                                // If this is the last postfix in the chain, then it is a "bare" access and auto-insert is allowed
2262                                // the type is `value_type` since this lookup is safe. we can create a memory location if there wasn't one
2263                                (
2264                                    LocationAccessKind::MapIndexInsertIfNonExisting(
2265                                        map_type.clone(),
2266                                        key_expr,
2267                                    ),
2268                                    map_type.value_type.clone(),
2269                                )
2270                            } else {
2271                                let optional_value_type =
2272                                    Type::Optional(Box::from(map_type.value_type.clone()));
2273                                (
2274                                    LocationAccessKind::MapIndex(map_type.clone(), key_expr),
2275                                    optional_value_type,
2276                                )
2277                            };
2278
2279                            self.add_location_item(
2280                                &mut items,
2281                                kind,
2282                                lookup_type.clone(),
2283                                &lookup_expr.node,
2284                            );
2285                            ty = lookup_type;
2286                        }
2287
2288                        Type::Generic(collection_type, generic_params) => {
2289                            if let Type::External(rust_type) = &**collection_type {
2290                                let val_type = generic_params[0].clone();
2291                                if rust_type.number == SPARSE_TYPE_ID {
2292                                    let sparse_id_type = self
2293                                        .shared
2294                                        .lookup_table
2295                                        .get_external_type("SparseId")
2296                                        .expect("should have SparseId");
2297
2298                                    let key_type = Type::External(sparse_id_type.clone());
2299                                    let key_type_context = TypeContext::new_argument(&key_type);
2300
2301                                    let key_expr =
2302                                        self.analyze_expression(lookup_expr, &key_type_context)?;
2303
2304                                    self.add_location_item(
2305                                        &mut items,
2306                                        LocationAccessKind::ExternalTypeIndex(
2307                                            rust_type.clone(),
2308                                            key_expr,
2309                                        ),
2310                                        key_type.clone(),
2311                                        &lookup_expr.node,
2312                                    );
2313
2314                                    ty = Type::Optional(Box::from(val_type.clone()));
2315                                }
2316                            }
2317                        }
2318
2319                        _ => {
2320                            return Err(
2321                                self.create_err(ErrorKind::IllegalIndexInChain, &lookup_expr.node)
2322                            );
2323                        }
2324                    }
2325                }
2326
2327                swamp_script_ast::Postfix::MemberCall(node, _) => {
2328                    return Err(self.create_err(ErrorKind::CallsCanNotBePartOfChain, node));
2329                }
2330
2331                swamp_script_ast::Postfix::FunctionCall(node, _) => {
2332                    return Err(self.create_err(ErrorKind::CallsCanNotBePartOfChain, node));
2333                }
2334                swamp_script_ast::Postfix::OptionUnwrap(node) => {
2335                    return Err(self.create_err(ErrorKind::UnwrapCanNotBePartOfChain, node));
2336                }
2337                swamp_script_ast::Postfix::NoneCoalesce(expr) => {
2338                    return Err(
2339                        self.create_err(ErrorKind::NoneCoalesceCanNotBePartOfChain, &expr.node)
2340                    );
2341                }
2342            }
2343        }
2344
2345        if let Some(found_expected_type) = context.expected_type {
2346            if !ty.compatible_with(found_expected_type) {
2347                return Err(self.create_err(
2348                    ErrorKind::IncompatibleTypes(ty, found_expected_type.clone()),
2349                    &chain.base.node,
2350                ));
2351            }
2352        }
2353
2354        let location = SingleLocationExpression {
2355            kind: SingleLocationExpressionKind::MutVariableRef,
2356            node: self.to_node(&chain.base.node),
2357            ty: ty.clone(),
2358            starting_variable: start_variable,
2359            access_chain: items,
2360        };
2361        Ok(location)
2362    }
2363
2364    fn analyze_to_location(
2365        &mut self,
2366        expr: &swamp_script_ast::Expression,
2367        context: &TypeContext,
2368        location_type: LocationSide,
2369    ) -> Result<SingleLocationExpression, Error> {
2370        match &expr.kind {
2371            swamp_script_ast::ExpressionKind::PostfixChain(chain) => {
2372                self.analyze_chain_to_location(chain, context, location_type)
2373            }
2374            swamp_script_ast::ExpressionKind::IdentifierReference(variable) => {
2375                let var = self.find_variable(variable)?;
2376                if var.is_mutable() {
2377                    Ok(SingleLocationExpression {
2378                        kind: SingleLocationExpressionKind::MutVariableRef,
2379                        node: self.to_node(&variable.name),
2380                        ty: var.resolved_type.clone(),
2381                        starting_variable: var,
2382                        access_chain: vec![],
2383                    })
2384                } else {
2385                    Err(self.create_err(ErrorKind::VariableIsNotMutable, &expr.node))
2386                }
2387            }
2388            _ => Err(self.create_err(ErrorKind::NotValidLocationStartingPoint, &expr.node)),
2389        }
2390    }
2391
2392    #[allow(clippy::single_match)]
2393    fn check_special_assignment_compound(
2394        &mut self,
2395        target_expression: &swamp_script_ast::Expression,
2396        target_type: &Type,
2397        op: &CompoundOperatorKind,
2398        source: &swamp_script_ast::Expression,
2399        source_type: &Type,
2400    ) -> Result<Option<ExpressionKind>, Error> {
2401        match &target_type {
2402            Type::Array(array_type) => {
2403                let target_type_context = TypeContext::new_argument(target_type);
2404                let source_type_context = TypeContext::new_argument(source_type);
2405                if *op == CompoundOperatorKind::Add
2406                    && source_type.compatible_with(&array_type.item_type)
2407                {
2408                    // Handle ArrayPush
2409                    let target_location = SingleMutLocationExpression(self.analyze_to_location(
2410                        target_expression,
2411                        &target_type_context,
2412                        LocationSide::Rhs,
2413                    )?);
2414                    let resolved_source = self.analyze_expression(source, &source_type_context)?;
2415                    return Ok(Option::from(ExpressionKind::IntrinsicCallMut(
2416                        IntrinsicFunction::VecSelfPush,
2417                        target_location,
2418                        vec![resolved_source],
2419                    )));
2420                } else if *op == CompoundOperatorKind::Add
2421                    && source_type.compatible_with(target_type)
2422                {
2423                    // Handle ArrayExtend
2424                    let target_location = SingleMutLocationExpression(self.analyze_to_location(
2425                        target_expression,
2426                        &target_type_context,
2427                        LocationSide::Rhs,
2428                    )?);
2429                    let resolved_source = self.analyze_expression(source, &source_type_context)?;
2430                    return Ok(Option::from(ExpressionKind::IntrinsicCallMut(
2431                        IntrinsicFunction::VecSelfExtend,
2432                        target_location,
2433                        vec![resolved_source],
2434                    )));
2435                }
2436            }
2437            _ => {}
2438        }
2439
2440        Ok(None)
2441    }
2442
2443    fn analyze_assignment_compound(
2444        &mut self,
2445        target_expression: &swamp_script_ast::Expression,
2446        ast_op: &swamp_script_ast::CompoundOperator,
2447        ast_source_expression: &swamp_script_ast::Expression,
2448    ) -> Result<Expression, Error> {
2449        let resolved_op = self.analyze_compound_operator(ast_op);
2450        let any_argument_context = TypeContext::new_anything_argument();
2451        let source_expr = self.analyze_expression(ast_source_expression, &any_argument_context)?;
2452        let source_expr_type_context = TypeContext::new_argument(&source_expr.ty);
2453
2454        let resolved_location = SingleMutLocationExpression(self.analyze_to_location(
2455            target_expression,
2456            &source_expr_type_context,
2457            LocationSide::Rhs,
2458        )?);
2459
2460        let kind = if let Some(found_special) = self.check_special_assignment_compound(
2461            target_expression,
2462            &resolved_location.0.ty,
2463            &resolved_op.kind,
2464            ast_source_expression,
2465            &source_expr.ty,
2466        )? {
2467            found_special
2468        } else {
2469            ExpressionKind::CompoundAssignment(
2470                resolved_location,
2471                resolved_op.kind,
2472                Box::from(source_expr),
2473            )
2474        };
2475
2476        let expr = self.create_expr(kind, Type::Unit, &target_expression.node);
2477
2478        Ok(expr)
2479    }
2480
2481    fn analyze_assignment(
2482        &mut self,
2483        target_location: &swamp_script_ast::Expression,
2484        ast_source_expression: &swamp_script_ast::Expression,
2485    ) -> Result<Expression, Error> {
2486        let any_argument_context = TypeContext::new_anything_argument();
2487        let resolved_location =
2488            self.analyze_to_location(target_location, &any_argument_context, LocationSide::Lhs)?;
2489
2490        let ty = resolved_location.ty.clone();
2491        if ty == Type::Unit {
2492            error!(?ast_source_expression, "unit problem");
2493        }
2494
2495        let lhs_argument_context = TypeContext::new_argument(&ty);
2496        let source_expr = self.analyze_expression(ast_source_expression, &lhs_argument_context)?;
2497
2498        let mut_location = SingleMutLocationExpression(resolved_location);
2499
2500        let kind = ExpressionKind::Assignment(Box::from(mut_location), Box::from(source_expr));
2501
2502        let expr = self.create_expr(kind, Type::Unit, &target_location.node); // Assignments are always of type Unit
2503
2504        Ok(expr)
2505    }
2506
2507    #[must_use]
2508    pub fn create_mut_single_location_expr(
2509        &self,
2510        kind: SingleLocationExpressionKind,
2511        ty: Type,
2512        ast_node: &swamp_script_ast::Node,
2513    ) -> SingleMutLocationExpression {
2514        SingleMutLocationExpression(SingleLocationExpression {
2515            kind,
2516            ty,
2517            starting_variable: Rc::new(Variable {
2518                name: Node::default(),
2519                resolved_type: Type::Int,
2520                mutable_node: None,
2521                scope_index: 0,
2522                variable_index: 0,
2523            }),
2524            node: self.to_node(ast_node),
2525            access_chain: vec![],
2526        })
2527    }
2528
2529    #[must_use]
2530    pub fn create_single_location_expr(
2531        &self,
2532        kind: SingleLocationExpressionKind,
2533        ty: Type,
2534        ast_node: &swamp_script_ast::Node,
2535    ) -> SingleLocationExpression {
2536        SingleLocationExpression {
2537            kind,
2538            ty,
2539            starting_variable: Rc::new(Variable {
2540                name: Node::default(),
2541                resolved_type: Type::Int,
2542                mutable_node: None,
2543                scope_index: 0,
2544                variable_index: 0,
2545            }),
2546            node: self.to_node(ast_node),
2547            access_chain: vec![],
2548        }
2549    }
2550
2551    #[must_use]
2552    pub fn create_single_location_expr_resolved(
2553        &self,
2554        kind: SingleLocationExpressionKind,
2555        ty: Type,
2556        node: &Node,
2557    ) -> SingleLocationExpression {
2558        SingleLocationExpression {
2559            kind,
2560            ty,
2561            starting_variable: Rc::new(Variable {
2562                name: Node::default(),
2563                resolved_type: Type::Int,
2564                mutable_node: None,
2565                scope_index: 0,
2566                variable_index: 0,
2567            }),
2568            node: node.clone(),
2569            access_chain: vec![],
2570        }
2571    }
2572    #[must_use]
2573    pub fn create_mut_single_location_expr_resolved(
2574        &self,
2575        kind: SingleLocationExpressionKind,
2576        ty: Type,
2577        node: &Node,
2578    ) -> SingleMutLocationExpression {
2579        SingleMutLocationExpression(SingleLocationExpression {
2580            kind,
2581            ty,
2582            starting_variable: Rc::new(Variable {
2583                name: Node::default(),
2584                resolved_type: Type::Int,
2585                mutable_node: None,
2586                scope_index: 0,
2587                variable_index: 0,
2588            }),
2589            node: node.clone(),
2590            access_chain: vec![],
2591        })
2592    }
2593
2594    #[must_use]
2595    pub const fn create_expr(
2596        &self,
2597        kind: ExpressionKind,
2598        ty: Type,
2599        ast_node: &swamp_script_ast::Node,
2600    ) -> Expression {
2601        //info!(%ty, ?kind, "create_expr()");
2602        Expression {
2603            kind,
2604            ty,
2605            node: self.to_node(ast_node),
2606        }
2607    }
2608
2609    #[must_use]
2610    pub fn create_expr_resolved(
2611        &self,
2612        kind: ExpressionKind,
2613        ty: Type,
2614        ast_node: &Node,
2615    ) -> Expression {
2616        Expression {
2617            kind,
2618            ty,
2619            node: ast_node.clone(),
2620        }
2621    }
2622
2623    fn analyze_destructuring(
2624        &mut self,
2625        node: &swamp_script_ast::Node,
2626        target_ast_variables: &[swamp_script_ast::Variable],
2627        tuple_expression: &swamp_script_ast::Expression,
2628    ) -> Result<Expression, Error> {
2629        let any_context = TypeContext::new_anything_argument();
2630        let tuple_resolved = self.analyze_expression(tuple_expression, &any_context)?;
2631        let tuple_expr_type = &tuple_resolved.ty;
2632
2633        let mut variable_refs = Vec::new();
2634        if let Type::Tuple(tuple) = tuple_expr_type.clone() {
2635            if target_ast_variables.len() > tuple.0.len() {
2636                return Err(self.create_err(ErrorKind::TooManyDestructureVariables, node));
2637            }
2638            for (variable_ref, tuple_type) in target_ast_variables.iter().zip(tuple.0.clone()) {
2639                let (variable_ref, _is_reassignment) =
2640                    self.set_or_overwrite_variable_with_type(variable_ref, &tuple_type)?;
2641                variable_refs.push(variable_ref);
2642            }
2643            let expr_kind =
2644                ExpressionKind::TupleDestructuring(variable_refs, tuple, Box::from(tuple_resolved));
2645
2646            Ok(self.create_expr(expr_kind, Type::Unit, node))
2647        } else {
2648            Err(self.create_err(ErrorKind::CanNotDestructure, node))
2649        }
2650    }
2651
2652    fn analyze_postfix_member_func_call(
2653        &mut self,
2654        resolved_node: &Node,
2655        found_function: &FunctionRef,
2656        struct_type: &StructTypeRef,
2657        is_mutable: bool,
2658        arguments: &[swamp_script_ast::MutableOrImmutableExpression],
2659    ) -> Result<Postfix, Error> {
2660        let signature = found_function.signature();
2661
2662        let self_type = &signature.parameters[0];
2663        if !self_type
2664            .resolved_type
2665            .compatible_with(&Type::NamedStruct(struct_type.clone()))
2666            || self_type.is_mutable && !is_mutable
2667        {
2668            return Err(self.create_err_resolved(ErrorKind::SelfNotCorrectType, resolved_node));
2669        }
2670
2671        let resolved_arguments = self.analyze_and_verify_parameters(
2672            resolved_node,
2673            &signature.parameters[1..],
2674            arguments,
2675        )?;
2676
2677        let kind = PostfixKind::MemberCall(found_function.clone(), resolved_arguments);
2678        let postfix = Postfix {
2679            node: resolved_node.clone(),
2680            ty: *signature.return_type.clone(),
2681            kind,
2682        };
2683
2684        Ok(postfix)
2685    }
2686
2687    fn analyze_postfix_field_call(
2688        &mut self,
2689        resolved_node: &Node,
2690        struct_type: &StructTypeRef,
2691        field: &StructTypeField,
2692        index: usize,
2693        signature: &Signature,
2694        arguments: &[swamp_script_ast::MutableOrImmutableExpression],
2695    ) -> Result<Vec<Postfix>, Error> {
2696        let mut suffixes = Vec::new();
2697        //let field_name_str = self.get_text(member_name).to_string();
2698        let struct_field_kind =
2699            PostfixKind::StructField(struct_type.borrow().anon_struct_type.clone(), index);
2700
2701        let struct_field_postfix = Postfix {
2702            node: resolved_node.clone(),
2703            ty: field.field_type.clone(),
2704            kind: struct_field_kind,
2705        };
2706
2707        suffixes.push(struct_field_postfix);
2708
2709        let resolved_arguments =
2710            self.analyze_and_verify_parameters(resolved_node, &signature.parameters, arguments)?;
2711
2712        let call_kind = PostfixKind::FunctionCall(resolved_arguments);
2713
2714        let call_postfix = Postfix {
2715            node: resolved_node.clone(),
2716            ty: *signature.return_type.clone(),
2717            kind: call_kind,
2718        };
2719        suffixes.push(call_postfix);
2720
2721        Ok(suffixes)
2722    }
2723
2724    fn analyze_postfix_member_call(
2725        &mut self,
2726        struct_type: &StructTypeRef,
2727        is_mutable: bool,
2728        member_name: &swamp_script_ast::Node,
2729        arguments: &[swamp_script_ast::MutableOrImmutableExpression],
2730        suffixes: &mut Vec<Postfix>,
2731    ) -> Result<Type, Error> {
2732        let field_name_str = self.get_text(member_name).to_string();
2733
2734        let resolved_node = self.to_node(member_name);
2735        let binding = struct_type.borrow();
2736        let postfixes = match binding.functions.get(&field_name_str) {
2737            Some(found_function_member) => {
2738                let postfix = self.analyze_postfix_member_func_call(
2739                    &resolved_node,
2740                    found_function_member,
2741                    struct_type,
2742                    is_mutable,
2743                    arguments,
2744                )?;
2745                vec![postfix]
2746            }
2747            _ => match binding
2748                .anon_struct_type
2749                .field_name_sorted_fields
2750                .get(&field_name_str)
2751            {
2752                Some(found_field) => {
2753                    if let Type::Function(signature) = &found_field.field_type {
2754                        let index = binding
2755                            .anon_struct_type
2756                            .field_name_sorted_fields
2757                            .get_index(&field_name_str)
2758                            .expect("should work");
2759                        self.analyze_postfix_field_call(
2760                            &resolved_node,
2761                            struct_type,
2762                            found_field,
2763                            index,
2764                            signature,
2765                            arguments,
2766                        )?
2767                    } else {
2768                        return Err(
2769                            self.create_err(ErrorKind::NotValidLocationStartingPoint, member_name)
2770                        );
2771                    }
2772                }
2773                _ => {
2774                    return Err(
2775                        self.create_err(ErrorKind::NotValidLocationStartingPoint, member_name)
2776                    );
2777                }
2778            },
2779        };
2780
2781        let last_type = postfixes.last().unwrap().ty.clone();
2782        suffixes.extend(postfixes);
2783
2784        Ok(last_type)
2785    }
2786
2787    /*
2788    pub fn analyze_range(&mut self, min_value: &Expression, max_value: &Expression, range_mode: &RangeMode) -> Range {
2789        let min_expression =
2790            self.analyze_expression(min_value, Some(&Type::Int))?;
2791        let max_expression =
2792            self.analyze_expression(max_value, Some(&Type::Int))?;
2793
2794        Range {
2795            min: min_expression,
2796            max: max_expression,
2797            mode: convert_range_mode(range_mode),
2798        }
2799    }
2800     */
2801
2802    fn analyze_break(
2803        &self,
2804        context: &TypeContext,
2805        node: &swamp_script_ast::Node,
2806    ) -> Result<Expression, Error> {
2807        if !context.allows_break() {
2808            return Err(self.create_err(ErrorKind::BreakOutsideLoop, node));
2809        }
2810
2811        Ok(Expression {
2812            kind: ExpressionKind::Break,
2813            ty: Type::Never,
2814            node: self.to_node(node),
2815        })
2816    }
2817
2818    fn analyze_return(
2819        &mut self,
2820        context: &TypeContext,
2821        optional_expression: Option<&swamp_script_ast::Expression>,
2822        node: &swamp_script_ast::Node,
2823    ) -> Result<Expression, Error> {
2824        if !context.allows_return() {
2825            return Err(self.create_err(ErrorKind::ReturnOutsideCompare, node));
2826        }
2827
2828        let return_context = context.for_return();
2829        let inner = if let Some(expr) = optional_expression {
2830            Some(Box::new(self.analyze_expression(expr, &return_context)?))
2831        } else {
2832            // Empty return
2833            None
2834        };
2835
2836        Ok(self.create_expr(ExpressionKind::Return(inner), Type::Never, node))
2837    }
2838
2839    fn analyze_continue(
2840        &self,
2841        context: &TypeContext,
2842        node: &swamp_script_ast::Node,
2843    ) -> Result<Expression, Error> {
2844        if !context.allows_continue() {
2845            return Err(self.create_err(ErrorKind::ContinueOutsideLoop, node));
2846        }
2847        Ok(self.create_expr(ExpressionKind::Continue, Type::Never, node))
2848    }
2849
2850    fn coerce_expression(
2851        &self,
2852        expr: Expression,
2853        expected_type: &Type,
2854        encountered_type: &Type,
2855        node: &swamp_script_ast::Node,
2856    ) -> Result<Expression, Error> {
2857        if !matches!(encountered_type, Type::Optional(_)) {
2858            // If an optional is expected, we can wrap it
2859            if let Type::Optional(expected_inner_type) = expected_type {
2860                if encountered_type.compatible_with(expected_inner_type) {
2861                    let wrapped = self.create_expr(
2862                        ExpressionKind::Option(Option::from(Box::new(expr))),
2863                        expected_type.clone(),
2864                        node,
2865                    );
2866                    return Ok(wrapped);
2867                }
2868            }
2869        } else if matches!(expected_type, &Type::Bool) {
2870            if let Type::Optional(_inner_type) = encountered_type {
2871                let wrapped = self.create_expr(
2872                    ExpressionKind::CoerceOptionToBool(Box::from(expr)),
2873                    Type::Bool,
2874                    node,
2875                );
2876                return Ok(wrapped);
2877            }
2878        }
2879
2880        error!(?expr, "expr");
2881        error!(?expected_type, ?encountered_type, "incompatible types");
2882
2883        Err(self.create_err(
2884            ErrorKind::IncompatibleTypes(expected_type.clone(), encountered_type.clone()),
2885            node,
2886        ))
2887    }
2888}