1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//! Defines the operations around performing computations on a loaded model.
use crate::storage::surml_file::SurMlFile;
use std::collections::HashMap;
use ndarray::{ArrayD, CowArray};
use ort::{SessionBuilder, Value};
use super::onnx_environment::ENVIRONMENT;


/// A wrapper for the loaded machine learning model so we can perform computations on the loaded model.
/// 
/// # Attributes
/// * `surml_file` - The loaded machine learning model using interior mutability to allow mutable access to the model
pub struct ModelComputation<'a> {
    pub surml_file: &'a mut SurMlFile,
}


impl <'a>ModelComputation<'a> {

    /// Creates a Tensor that can be used as input to the loaded model from a hashmap of keys and values.
    /// 
    /// # Arguments
    /// * `input_values` - A hashmap of keys and values that will be used to create the input tensor.
    /// 
    /// # Returns
    /// A Tensor that can be used as input to the loaded model.
    pub fn input_tensor_from_key_bindings(&self, input_values: HashMap<String, f32>) -> ArrayD<f32> {
        let buffer = self.input_vector_from_key_bindings(input_values);
        ndarray::arr1::<f32>(&buffer).into_dyn()
    }

    /// Creates a Vector that can be used manipulated with other operations such as normalisation from a hashmap of keys and values.
    /// 
    /// # Arguments
    /// * `input_values` - A hashmap of keys and values that will be used to create the input vector.
    /// 
    /// # Returns
    /// A Vector that can be used manipulated with other operations such as normalisation.
    pub fn input_vector_from_key_bindings(&self, mut input_values: HashMap<String, f32>) -> Vec<f32> {
        let mut buffer = Vec::with_capacity(self.surml_file.header.keys.store.len());
        for key in &self.surml_file.header.keys.store {
            let value = input_values.get_mut(key).unwrap();
            buffer.push(std::mem::take(value));
        }
        buffer
    }

    /// Performs a raw computation on the loaded model.
    /// 
    /// # Arguments
    /// * `tensor` - The input tensor to the loaded model.
    /// 
    /// # Returns
    /// The computed output tensor from the loaded model.
    pub fn raw_compute(&self, tensor: ArrayD<f32>, dims: Option<(i32, i32)>) -> Result<Vec<f32>, String> {

        let tensor_placeholder: ArrayD<f32>;
        if dims.is_some() {
            let dims = dims.unwrap();
            let tensor = tensor.into_shape((dims.0 as usize, dims.1 as usize)).unwrap();
            tensor_placeholder = tensor.into_dyn();
        }
        else {
            tensor_placeholder = tensor;
        }

        // let environment = Arc::new(
        //     Environment::builder()
        //         .with_execution_providers([ExecutionProvider::CPU(Default::default())])
        //         .build()
        //         .map_err(|e| e.to_string())?
        // );
        let session = SessionBuilder::new(&ENVIRONMENT).map_err(|e| e.to_string())?
                                                       .with_model_from_memory(&self.surml_file.model)
                                                       .map_err(|e| e.to_string())?;
        let x = CowArray::from(tensor_placeholder);
        let outputs = session.run(vec![Value::from_array(session.allocator(), &x).unwrap()]).map_err(|e| e.to_string())?;

        let mut buffer: Vec<f32> = Vec::new();

        // extract the output tensor converting the values to f32 if they are i64
        match outputs[0].try_extract::<f32>() {
            Ok(y) => {
                for i in y.view().clone().into_iter() {
                    buffer.push(*i);
                }
            },
            Err(_) => {
                match outputs[0].try_extract::<i64>() {
                    Ok(y) => {
                        for i in y.view().clone().into_iter() {
                            buffer.push(*i as f32);
                        }
                    },
                    Err(e) => return Err(e.to_string())
                }
            }
        };
        return Ok(buffer)
    }

    /// Checks the header applying normalisers if present and then performs a raw computation on the loaded model. Will
    /// also apply inverse normalisers if present on the outputs.
    /// 
    /// # Notes
    /// This function is fairly coupled and will consider breaking out the functions later on if needed.
    /// 
    /// # Arguments
    /// * `input_values` - A hashmap of keys and values that will be used to create the input tensor.
    /// 
    /// # Returns
    /// The computed output tensor from the loaded model.
    pub fn buffered_compute(&self, input_values: &mut HashMap<String, f32>) -> Result<Vec<f32>, String> {
        // applying normalisers if present
        for (key, value) in &mut *input_values {
            let value_ref = value.clone();
            match self.surml_file.header.get_normaliser(&key.to_string()) {
                Some(normaliser) => {
                    *value = normaliser.normalise(value_ref);
                },
                None => {}
            }
        }
        let tensor = self.input_tensor_from_key_bindings(input_values.clone());
        let output = self.raw_compute(tensor, None)?;
        
        // if no normaliser is present, return the output
        if self.surml_file.header.output.normaliser == None {
            return Ok(output)
        }

        // apply the normaliser to the output
        let output_normaliser = self.surml_file.header.output.normaliser.as_ref().unwrap();
        let mut buffer = Vec::with_capacity(output.len());

        for value in output {
            buffer.push(output_normaliser.inverse_normalise(value));
        }
        return Ok(buffer)
    }

}


#[cfg(test)]
mod tests {

    use super::*;

    #[test]
    fn test_raw_compute() {

        let mut file = SurMlFile::from_file("./stash/test.surml").unwrap();
        let model_computation = ModelComputation {
            surml_file: &mut file,
        };

        let mut input_values = HashMap::new();
        input_values.insert(String::from("squarefoot"), 1000.0);
        input_values.insert(String::from("num_floors"), 2.0);

        let output = model_computation.raw_compute(model_computation.input_tensor_from_key_bindings(input_values), None).unwrap();
        assert_eq!(output.len(), 1);
        assert_eq!(output[0], 725.42053);
    }


    #[test]
    fn test_buffered_compute() {
        let mut file = SurMlFile::from_file("./stash/test.surml").unwrap();
        let model_computation = ModelComputation {
            surml_file: &mut file,
        };

        let mut input_values = HashMap::new();
        input_values.insert(String::from("squarefoot"), 1000.0);
        input_values.insert(String::from("num_floors"), 2.0);

        let output = model_computation.buffered_compute(&mut input_values).unwrap();
        assert_eq!(output.len(), 1);
        assert_eq!(output[0], 725.42053);
    }

    #[test]
    fn test_raw_compute_trees() {
            let mut file = SurMlFile::from_file("./stash/forrest.surml").unwrap();
            let model_computation = ModelComputation {
                surml_file: &mut file,
            };

            let x = vec![0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
            let data: ArrayD<f32> = ndarray::arr1(&x).into_dyn();
            let data: ArrayD<f32> = data.into_shape((1, 28)).unwrap().into_dyn();
    
            let output = model_computation.raw_compute(data, None).unwrap();
            assert_eq!(output.len(), 1);
            assert_eq!(output[0], 0.0);
    }
}