supertrait_macros/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
#![allow(non_snake_case)]
#![warn(missing_docs)]
//! Contains support macros for [supertrait](https://crates.io/crates/supertrait).
use macro_magic::import_tokens_attr;
use proc_macro::TokenStream;
use proc_macro2::{TokenStream as TokenStream2, TokenTree};
use quote::{format_ident, quote, ToTokens};
use rand::{distributions::Standard, prelude::Distribution, Rng};
use std::{
cell::RefCell,
collections::{HashMap, HashSet},
fmt::Debug,
sync::atomic::AtomicU64,
};
use syn::{
parse::{Nothing, Parse, ParseStream},
parse2, parse_macro_input, parse_quote, parse_str,
punctuated::Punctuated,
spanned::Spanned,
visit::Visit,
visit_mut::VisitMut,
Error, GenericParam, Generics, Ident, ImplItem, ImplItemFn, Item, ItemFn, ItemImpl, ItemMod,
ItemTrait, Path, Result, Signature, TraitItem, TraitItemFn, TraitItemType, TypePath,
Visibility, WherePredicate,
};
#[cfg(feature = "debug")]
use proc_utils::PrettyPrint;
mod generic_visitor;
use generic_visitor::*;
static IMPL_COUNT: AtomicU64 = AtomicU64::new(0);
thread_local! {
static SUPERTRAIT_PATH: RefCell<String> = RefCell::new(String::from("::supertrait"));
}
fn get_supertrait_path() -> Path {
SUPERTRAIT_PATH.with(|p| parse_str(p.borrow().clone().as_str()).unwrap())
}
fn random<T>() -> T
where
Standard: Distribution<T>,
{
let mut rng = rand::thread_rng();
rng.gen()
}
/// Allows you to override the module path where supertrait's macros will look for necessary
/// re-exports (such as `macro_magic`).
///
/// The default is `::supertrait`.
///
/// Generally speaking you shouldn't need to use this directly, but in some scenarios (like in
/// the `lib.rs` of the main crate, this is necessary).
#[proc_macro]
pub fn set_supertrait_path(tokens: TokenStream) -> TokenStream {
let path = parse_macro_input!(tokens as Path);
SUPERTRAIT_PATH.with(|p| p.replace(path.to_token_stream().to_string()));
quote!().into()
}
struct SuperTraitDef {
pub orig_trait: ItemTrait,
pub const_fns: Vec<TraitItemFn>,
pub types_with_defaults: Vec<TraitItemType>,
pub other_items: Vec<TraitItem>,
}
impl Parse for SuperTraitDef {
fn parse(input: ParseStream) -> Result<Self> {
let orig_trait = input.parse::<ItemTrait>()?;
let mut const_fns: Vec<TraitItemFn> = Vec::new();
let mut types_with_defaults: Vec<TraitItemType> = Vec::new();
let mut other_items: Vec<TraitItem> = Vec::new();
for trait_item in &orig_trait.items {
match trait_item {
TraitItem::Fn(trait_item_fn) => match trait_item_fn.sig.constness {
Some(_) => const_fns.push(trait_item_fn.clone()),
None => other_items.push(trait_item.clone()),
},
TraitItem::Type(typ) => match typ.default {
Some(_) => types_with_defaults.push(typ.clone()),
None => other_items.push(trait_item.clone()),
},
other_item => other_items.push(other_item.clone()),
}
}
Ok(SuperTraitDef {
orig_trait,
const_fns,
types_with_defaults,
other_items,
})
}
}
struct FilteredGenerics {
/// Represents the `#` in `impl<*> Something for MyStruct<#>`. Both variants share the same
/// where clause
use_generics: Generics,
/// Represents the `*` in `impl<*> Something for MyStruct<#>`. Both variants share the same
/// where clause
impl_generics: Generics,
has_defaults: HashSet<Ident>,
}
impl FilteredGenerics {
fn strip_default_generics(&mut self) {
// find generic params in impl_generics that have defaults
let has_defaults = self
.impl_generics
.params
.iter()
.filter_map(|g| match g {
GenericParam::Lifetime(_) => None,
GenericParam::Type(typ) => match typ.default {
Some(_) => Some(typ.force_get_ident()),
None => None,
},
GenericParam::Const(constant) => match constant.default {
Some(_) => Some(constant.force_get_ident()), // might be wrong
None => None,
},
})
.collect::<HashSet<Ident>>();
// strip these from impl_generics
self.impl_generics.params = self
.impl_generics
.params
.iter()
.filter(|g| !has_defaults.contains(&g.force_get_ident()))
.cloned()
.collect();
// also strip them from use_generics
self.use_generics.params = self
.use_generics
.params
.iter()
.filter(|g| !has_defaults.contains(&g.force_get_ident()))
.cloned()
.collect();
self.has_defaults = has_defaults;
}
}
fn filter_generics(generics: &Generics, whitelist: &HashSet<GenericUsage>) -> FilteredGenerics {
let filtered_generic_params = generics
.params
.iter()
.cloned()
.filter(|g| whitelist.contains(&g.into()));
// generate a version of the where clause containing only whitelisted usages
let filtered_where_clause = match &generics.where_clause {
Some(where_clause) => {
let mut where_clause = where_clause.clone();
let predicates_filtered = where_clause.predicates.iter().filter(|p| match *p {
WherePredicate::Lifetime(lifetime) => {
whitelist.contains(&GenericUsage::from_lifetime(&lifetime.lifetime))
}
WherePredicate::Type(typ) => {
whitelist.contains(&GenericUsage::from_type(&typ.bounded_ty))
}
_ => unimplemented!(),
});
where_clause.predicates = parse_quote!(#(#predicates_filtered),*);
Some(where_clause)
}
None => None,
};
let use_generic_params = filtered_generic_params.clone().map(|g| match g {
GenericParam::Lifetime(lifetime) => lifetime.lifetime.to_token_stream(),
GenericParam::Type(typ) => typ.ident.to_token_stream(),
GenericParam::Const(constant) => constant.ident.to_token_stream(),
});
let use_generics = Generics {
lt_token: parse_quote!(<),
params: parse_quote!(#(#use_generic_params),*),
gt_token: parse_quote!(>),
where_clause: filtered_where_clause.clone(),
};
let impl_generics = Generics {
lt_token: parse_quote!(<),
params: parse_quote!(#(#filtered_generic_params),*),
gt_token: parse_quote!(>),
where_clause: filtered_where_clause,
};
FilteredGenerics {
use_generics,
impl_generics,
has_defaults: HashSet::new(),
}
}
struct DefaultRemover;
impl VisitMut for DefaultRemover {
fn visit_generics_mut(&mut self, generics: &mut Generics) {
for param in &mut generics.params {
if let syn::GenericParam::Type(ref mut type_param) = param {
type_param.default = None;
}
}
}
}
trait PunctuatedExtension<T: ToTokens + Clone, P: ToTokens + std::default::Default>: Sized {
fn push_front(&mut self, value: T);
}
impl<T: ToTokens + Clone, P: ToTokens + std::default::Default> PunctuatedExtension<T, P>
for Punctuated<T, P>
{
fn push_front(&mut self, value: T) {
let mut new_punctuated = Punctuated::new();
new_punctuated.push(value);
new_punctuated.extend(self.iter().cloned());
*self = new_punctuated;
}
}
/// Attach this attribute to a trait definition to transform it into a supertrait, able to make
/// use of _default associated types_ and const fn trait items (the latter with some
/// limitations).
///
/// The following example demonstrates some of the major features and edge cases of supertraits:
///
/// ```ignore
/// #[supertrait]
/// pub trait Fizz<T: Copy>: Copy + Sized {
/// type Foo = Option<T>;
/// type Bar;
///
/// const fn double_value(val: T) -> (T, T) {
/// (val, val)
/// }
///
/// const fn triple_value(val: T) -> (T, T, T);
///
/// fn double_self_plus(&self, plus: Self::Foo) -> (Self, Self, Self::Foo) {
/// (*self, *self, plus)
/// }
///
/// const fn interleave<I>(&self, a: T, b: I) -> (I, Self::Foo, T);
/// }
/// ```
///
/// ### Default Associated Types
///
/// Supertrait supports default associated types in a supertrait definition. These associated
/// types can also be used in other trait items via `Self::SomeType` and this will work
/// properly anywhere in the trait or trait impl.
///
/// Implementers are free to override default types specified on the trait by simply impling
/// that trait item.
///
/// In practice, default associated types in supertrait behave exactly the way you would expect
/// them to behave when they finally reach stable Rust.
///
/// Generics are fully supported by this feature, and any types you mention in your default
/// associated type will automatically be in scope when you
/// [`#[impl_supertrait]`](`macro@impl_supertrait`) the trait.
///
///
/// ### Const Fn Trait Items
/// Supertrait also supports const fn trait items. These items are masked by auto-generated
/// non-const versions of the const fns that are added to enforce trait bounds.
///
/// Currently there is no way in stable Rust to add a const fn to a trait. To accomplish
/// something like this, supertrait does two things:
///
/// - First, in the expansion of [`#[impl_supertrait]`](`macro@impl_supertrait`), the const fns
/// are automatically implemented as _inherents_ on the implementing type. This creates major
/// limitations and makes it impossible to do things like blanket impls if they involve const
/// fns.
/// - Second, non-const copies that mask each const fn trait item are created and injected into
/// the resulting supertrait. This allow us to ensure all trait bounds are respected by
/// implementers.
///
/// Thus all bounds and trait requirements are enforced on the implementing type, however const
/// fns in particular are implemented as inherents, i.e. `impl MyStruct { const fn something()
/// {...} }`.
///
/// This technique has a few limitations. Because of naming collisions on inherent impls, you
/// can't impl the same (const-fn-containing) supertrait on the same type multiple times with
/// different generics, like you can with famous conventional traits like `From<T>`.
///
/// For more information, see the docs for [`#[impl_supertrait]`](`macro@impl_supertrait`).
///
/// ### Expansion
///
/// Supertrait relies heavily on the token teleportation capabilities provided by
/// [macro_magic](https://crates.io/crates/macro_magic). As a result, special care has to be
/// taken to ensure any in-scope types mentioned in the teleported areas of a supertrait are
/// accessible anywhere the supertrait is implemented.
///
/// To accomplish this, supertrait uses the "module wormhole" technique, whereby the actual
/// trait item (i.e. `MyTrait`) is represented as a module containing `use super::*;`, which in turn "teleports" all local
/// imports from the trait definition site to any context in which the trait is implemented.
/// Under the hood, the actual generated trait lives in `MyTrait::Trait`, along with a trait
/// and struct pair called `DefaultTypes` and `Defaults` (the latter, containing an impl
/// specifying all of the default types with their proper generics). That said, inside impls
/// for a supertrait called `MyTrait`, you can refer to the trait like `MyTrait` instead of
/// `MyTrait::Trait` as well as referring to the associated types like `Self::Whatever`
/// directly.
///
/// The following is the intermediate expansion for the `#[supertrait]` trait definition shown
/// above, decorated with comments explaining what the various parts do:
///
/// ```ignore
/// #[allow(non_snake_case)]
/// pub mod Fizz {
/// // "wormhole technique", this allows us to capture the trait definition import scope
/// // and re-use it at any trait impl sites.
/// use super::*;
///
/// /// Contains default associated types for this SuperTrait
/// pub struct Defaults;
///
/// /// A subset of the original [`Trait`] containing just the default associated types
/// /// _without_ their defaults. This is automatically implemented on [`Defaults`],
/// /// which contains the actual default type values.
/// pub trait DefaultTypes<T: Copy, __Self> {
/// type __Self;
/// type Foo;
/// }
///
/// // note that the `__Self` keyword is used internally in place of `Self`, which is
/// // replaced back with `Self` at the trait impl site
/// impl<T: Copy, __Self> DefaultTypes<T, __Self> for Defaults {
/// // default associated type values are stored here
/// type Foo = Option<T>;
/// type __Self = ();
/// }
///
/// // This trait is auto-generated and added as a bound on `Trait` to ensure that
/// // supertraits can only be implemented via the `#[impl_supertrait]` macro.
/// #[doc(hidden)]
/// pub trait SupertraitSealed2484139876 {}
///
/// // This is the actual internal trait that gets generated, including the
/// // auto-generated sealing bound
/// pub trait Trait<T: Copy>: Copy + Sized + SupertraitSealed2484139876 {
/// type Bar;
///
/// fn double_self_plus(&self, plus: Self::Foo) -> (Self, Self, Self::Foo) {
/// (*self, *self, plus)
/// }
///
/// type Foo;
///
/// fn double_value(val: T) -> (T, T) {
/// (val, val)
/// }
///
/// fn triple_value(val: T) -> (T, T, T);
///
/// fn interleave<I>(&self, a: T, b: I) -> (I, Self::Foo, T);
/// }
///
/// // The tokens of this module are all exported via `macro_magic` so that they can be
/// // accessed directly by `#[impl_supertrait]`. This contains all the information
/// // needed to complete the trait impl expansion.
/// #[::supertrait::__private::macro_magic::export_tokens_no_emit(Fizz_exported_tokens)]
/// mod exported_tokens {
/// // tokens for const fns are stored here
/// trait ConstFns {
/// const fn double_value(val: T) -> (T, T) {
/// (val, val)
/// }
/// const fn triple_value(val: T) -> (T, T, T);
/// const fn interleave<I>(&self, a: T, b: I) -> (I, Self::Foo, T);
/// }
///
/// // tokens various versions of the trait generics are stored in these fns
/// fn trait_impl_generics<T: Copy>() {}
/// fn trait_use_generics<T>() {}
/// fn default_impl_generics<T: Copy, __Self>() {}
/// fn default_use_generics<T, __Self>() {}
///
/// // tokens for default associated type values are stored here
/// mod default_items {
/// type Foo = Option<T>;
/// }
///
/// // This const is included solely so `#[impl_supertrait]` can access its `Ident`
/// // to unseal and successfully implement the underlying supertrait on some type.
/// const SupertraitSealed2484139876: () = ();
/// }
/// }
/// ```
///
/// Note that in the macro expansion code, these items are only stored as a token tree within a
/// `macro_rules` macro. Thus the syntax here does not need to compile, it just needs to parse
/// correctly as a module of items from the perspective of `syn`.
///
/// ### Debug Mode
///
/// If you enable the `debug` feature, you can add `debug` as an ident argument to this
/// attribute macro and its expansion will be pretty-printed to the terminal at build time.
/// This is extremely useful for debugging `supertrait` internals and for providing detailed
/// information when reporting bugs.
#[proc_macro_attribute]
pub fn supertrait(attr: TokenStream, tokens: TokenStream) -> TokenStream {
let mut attr = attr;
let debug = debug_feature(&mut attr);
match supertrait_internal(attr, tokens, debug) {
Ok(tokens) => tokens.into(),
Err(err) => err.into_compile_error().into(),
}
}
fn debug_feature(attr: &mut TokenStream) -> bool {
if let Ok(ident) = syn::parse::<Ident>(attr.clone()) {
if ident == "debug" {
*attr = TokenStream::new();
if cfg!(feature = "debug") {
true
} else {
println!("warning: the 'debug' feature must be enabled for debug to work on supertrait attributes.");
false
}
} else {
false
}
} else {
false
}
}
fn supertrait_internal(
attr: impl Into<TokenStream2>,
tokens: impl Into<TokenStream2>,
#[allow(unused)] debug: bool,
) -> Result<TokenStream2> {
parse2::<Nothing>(attr.into())?;
let def = parse2::<SuperTraitDef>(tokens.into())?;
let export_tokens_ident = format_ident!("{}_exported_tokens", def.orig_trait.ident);
let mut modified_trait = def.orig_trait;
modified_trait.items = def.other_items;
let ident = modified_trait.ident.clone();
let attrs = modified_trait.attrs.clone();
let mut defaults = def.types_with_defaults;
let unfilled_defaults = defaults
.iter()
.cloned()
.map(|mut typ| {
typ.default = None;
typ
})
.collect::<Vec<_>>();
let mut visitor = FindGenericParam::new(&modified_trait.generics);
let mut replace_self = ReplaceSelfType {
replace_type: parse_quote!(__Self),
};
for trait_item_type in &mut defaults {
visitor.visit_trait_item_type(trait_item_type);
replace_self.visit_trait_item_type_mut(trait_item_type);
}
let mut default_generics = filter_generics(&modified_trait.generics, &visitor.usages);
default_generics
.impl_generics
.params
.push_front(parse_quote!(__Self));
default_generics
.use_generics
.params
.push_front(parse_quote!(__Self));
let default_impl_generics = default_generics.impl_generics;
let default_use_generics = default_generics.use_generics;
modified_trait.ident = parse_quote!(Trait);
let trait_use_generic_params = modified_trait.generics.params.iter().map(|g| match g {
GenericParam::Lifetime(lifetime) => lifetime.lifetime.to_token_stream(),
GenericParam::Type(typ) => typ.ident.to_token_stream(),
GenericParam::Const(constant) => constant.ident.to_token_stream(),
});
let trait_impl_generics = modified_trait.generics.clone();
let trait_use_generics = Generics {
lt_token: parse_quote!(<),
params: parse_quote!(#(#trait_use_generic_params),*),
gt_token: parse_quote!(>),
where_clause: modified_trait.generics.where_clause.clone(),
};
let const_fns = def.const_fns;
let mut trait_impl_generics_fn: ItemFn = parse_quote! { fn trait_impl_generics() {} };
let mut trait_use_generics_fn: ItemFn = parse_quote! { fn trait_use_generics() {} };
let mut default_impl_generics_fn: ItemFn = parse_quote! { fn default_impl_generics() {} };
let mut default_use_generics_fn: ItemFn = parse_quote! { fn default_use_generics() {} };
trait_impl_generics_fn.sig.generics = trait_impl_generics.clone();
trait_use_generics_fn.sig.generics = trait_use_generics;
default_impl_generics_fn.sig.generics = default_impl_generics.clone();
default_use_generics_fn.sig.generics = default_use_generics.clone();
modified_trait
.items
.extend(unfilled_defaults.iter().map(|item| parse_quote!(#item)));
let converted_const_fns = const_fns.iter().map(|const_fn| {
let mut item = const_fn.clone();
item.sig.constness = None;
let item: TraitItem = parse_quote!(#item);
item
});
modified_trait.items.extend(converted_const_fns);
let supertrait_path = get_supertrait_path();
// seal trait with random ident
let random_value: u32 = random();
let sealed_ident = format_ident!("SupertraitSealed{random_value}");
let sealed_trait: ItemTrait = parse_quote!(pub trait #sealed_ident {});
modified_trait.supertraits.push(parse_quote!(#sealed_ident));
let mut default_remover = DefaultRemover {};
let mut default_impl_generics_no_defaults = default_impl_generics.clone();
default_remover.visit_generics_mut(&mut default_impl_generics_no_defaults);
modified_trait.vis = parse_quote!(pub);
for def in defaults.iter_mut() {
def.bounds.clear()
}
let output = quote! {
#(#attrs)*
#[allow(non_snake_case)]
pub mod #ident {
use super::*;
/// Contains default associated types for this SuperTrait
pub struct Defaults;
/// A subset of the original [`Trait`] containing just the default associated types
/// _without_ their defaults. This is automatically implemented on [`Defaults`],
/// which contains the actual default type values.
pub trait DefaultTypes #default_impl_generics {
/// Used internally to represent the `Self` type.
#[doc(hidden)]
type __Self;
#(#unfilled_defaults)*
}
impl #default_impl_generics_no_defaults DefaultTypes #default_use_generics for Defaults {
#(#defaults)*
#[doc(hidden)]
type __Self = ();
}
/// A compile-time generated random trait used to seal supertraits so they can only
/// be implemented using `impl_supertrait`.
#[doc(hidden)]
#sealed_trait
/// The internal trait that is a part of this supertrait.
///
#(#attrs)*
#modified_trait
#[#supertrait_path::__private::macro_magic::export_tokens_no_emit(#export_tokens_ident)]
mod exported_tokens {
trait ConstFns {
#(#const_fns)*
}
#trait_impl_generics_fn
#trait_use_generics_fn
#default_impl_generics_fn
#default_use_generics_fn
mod default_items {
#(#defaults)*
}
const #sealed_ident: () = ();
}
}
};
#[cfg(feature = "debug")]
if debug {
output.pretty_print();
}
Ok(output)
}
#[doc(hidden)]
#[import_tokens_attr(format!(
"{}::__private::macro_magic",
get_supertrait_path().to_token_stream().to_string()
))]
#[proc_macro_attribute]
pub fn __impl_supertrait(attr: TokenStream, tokens: TokenStream) -> TokenStream {
match impl_supertrait_internal(attr, tokens) {
Ok(tokens) => tokens.into(),
Err(err) => err.into_compile_error().into(),
}
}
/// Must be attached to any impl statement involving a supertrait.
///
/// This is the impl analogue of [`#[supertrait]`](`macro@supertrait`) that you should use
/// whenever you impl a supertrait. In fact, a sealing technique is used to prevent anyone from
/// implementing a supertrait manually without the use of `#[impl_supertrait]`, For details on
/// this sealing technique, see the expansion details for
/// [`#[supertrait]`](`macro@supertrait`).
///
/// Consider the following supertrait definition (from the docs for
/// [`#[supertrait]`](`macro@supertrait`)):
///
/// ```ignore
/// use supertrait::*;
///
/// #[supertrait]
/// pub trait Fizz<T: Copy>: Copy + Sized {
/// type Foo = Option<T>;
/// type Bar;
///
/// const fn double_value(val: T) -> (T, T) {
/// (val, val)
/// }
///
/// const fn triple_value(val: T) -> (T, T, T);
///
/// fn double_self_plus(&self, plus: Self::Foo) -> (Self, Self, Self::Foo) {
/// (*self, *self, plus)
/// }
///
/// const fn interleave<I>(&self, a: T, b: I) -> (I, Self::Foo, T);
/// }
/// ```
///
/// The following code uses `#[impl_supertrait]` to implement `Fizz<T>` for the struct `Buzz`
/// and makes use of the implementation in various ways:
///
/// ```ignore
/// #[derive(Copy, Clone, PartialEq, Eq, Debug)]
/// struct Buzz;
///
/// #[impl_supertrait]
/// impl<T: Copy> Fizz<T> for Buzz {
/// type Bar = usize;
///
/// const fn triple_value(val: T) -> (T, T, T) {
/// (val, val, val)
/// }
///
/// const fn interleave<I>(&self, a: T, b: I) -> (I, Self::Foo, T) {
/// (b, Some(a), a)
/// }
/// }
///
/// #[test]
/// const fn test_buzz_const() {
/// assert!(Buzz::triple_value(3).0 == 3);
/// let buzz = Buzz {};
/// match buzz.interleave('h', false).1 {
/// Some(c) => assert!(c == 'h'),
/// None => unreachable!(),
/// }
/// }
///
/// #[test]
/// fn test_buzz_default_associated_types() {
/// let buzz = Buzz {};
/// assert_eq!(buzz.double_self_plus(Some(3)), (buzz, buzz, Some(3)))
/// }
///```
///
/// Note that the `Self::SomeType` syntax can be used to refer to associated types _anywhere_
/// within a `#[impl_supertrait]` impl block.
///
/// ### Expansion
///
/// Default associated types that are not overridden are redirected to point to their counter
/// parts in `MyTrait::Defaults`, with any accompanying generics. Thus the proper paths of any
/// types mentioned in default associated types is preserved thanks to the `use super::*` in
/// the "wormhole" `MyTrait` module.
///
/// Const fns are implemented as _inherents_ (i.e., directly implemented on the target type)
/// because Rust does not yet support const fns as trait items in stable. This adds a few
/// limitations, mainly around naming collisions, however all bounds and generics on const fns
/// are preserved, and failing to implement them will likewise result in a compile error, so
/// this is probably as close as we can get to something that emulates const fns as trait items
/// in a somewhat usable way in stable Rust.
///
/// Here is the expansion for the above `#[impl_supertrait]`:
///
/// ```ignore
/// impl<T: Copy> Fizz::Trait<T> for Buzz {
/// type Bar = usize;
///
/// // a value for `Foo` was not specified by the implementer, so the macro expansion
/// // substitutes the value for `Foo` contained in `Fizz::Defaults`, preserving
/// // whatever module-local types that may be mentioned in the default associated
/// // type.
/// type Foo = <Fizz::Defaults as Fizz::DefaultTypes<T, Buzz>>::Foo;
/// fn interleave<I>(&self, a: T, b: I) -> (I, <Buzz as Fizz::Trait<T>>::Foo, T) {
/// (b, Some(a), a)
/// }
/// fn triple_value(val: T) -> (T, T, T) {
/// (val, val, val)
/// }
/// fn double_value(val: T) -> (T, T) {
/// (val, val)
/// }
/// }
///
/// // This line unseals `Fizz`. Without this line, the sealing bounds on `Fizz`
/// // will create a compile error.
/// impl Fizz::SupertraitSealed3587271628 for Buzz {}
///
/// // This impl block contains the (inherent) const fn impls of `Fizz` on `Buzz`.
/// impl Buzz {
/// pub const fn interleave<I, T: Copy>(
/// &self,
/// a: T,
/// b: I,
/// ) -> (I, <Buzz as Fizz::Trait<T>>::Foo, T) {
/// (b, Some(a), a)
/// }
/// pub const fn triple_value<T: Copy>(val: T) -> (T, T, T) {
/// (val, val, val)
/// }
/// pub const fn double_value<T: Copy>(val: T) -> (T, T) {
/// (val, val)
/// }
/// }
///
/// // This use statement is automatically inserted by the macro expansion to ensure
/// // the underlying trait is actually brought into scope, since because of the
/// // "wormhole module" pattern, it is actually within the `Fizz` module.
/// #[allow(unused)]
/// use Fizz::Trait as BuzzFizzTraitImpl_4;
/// ```
///
/// See the documentation for [`#[supertrait]`](`macro@supertrait`) for more information.
///
/// ### Debug Mode
///
/// If you enable the `debug` feature, you can add `debug` as an ident argument to this
/// attribute macro and its expansion will be pretty-printed to the terminal at build time.
/// This is extremely useful for debugging `supertrait` internals and for providing detailed
/// information when reporting bugs.
#[proc_macro_attribute]
pub fn impl_supertrait(attr: TokenStream, tokens: TokenStream) -> TokenStream {
let mut attr = attr;
let debug = debug_feature(&mut attr);
parse_macro_input!(attr as Nothing);
let item_impl = parse_macro_input!(tokens as ItemImpl);
let trait_being_impled = match item_impl.trait_.clone() {
Some((_, path, _)) => path,
None => return Error::new(
item_impl.span(),
"Supertrait impls must have a trait being implemented. Inherent impls are not supported."
).into_compile_error().into(),
}.strip_trailing_generics();
let supertrait_path = get_supertrait_path();
let export_tokens_ident = format_ident!(
"{}_exported_tokens",
trait_being_impled.segments.last().unwrap().ident
);
let debug_tokens = if debug {
quote!(#[debug_mode])
} else {
quote!()
};
let output = quote! {
#[#supertrait_path::__impl_supertrait(#trait_being_impled::#export_tokens_ident)]
#debug_tokens
#item_impl
};
output.into()
}
struct ImportedTokens {
const_fns: Vec<TraitItemFn>,
trait_impl_generics: Generics,
#[allow(unused)]
trait_use_generics: Generics,
#[allow(unused)]
default_impl_generics: Generics,
default_use_generics: Generics,
default_items: Vec<TraitItem>,
sealed_ident: Ident,
}
impl TryFrom<ItemMod> for ImportedTokens {
type Error = Error;
fn try_from(item_mod: ItemMod) -> std::result::Result<Self, Self::Error> {
if item_mod.ident != "exported_tokens" {
return Err(Error::new(
item_mod.ident.span(),
"expected `exported_tokens`.",
));
}
let item_mod_span = item_mod.span();
let Some((_, main_body)) = item_mod.content else {
return Err(Error::new(
item_mod_span,
"`exported_tokens` module must have a defined body."
));
};
let Some(Item::Trait(ItemTrait {
ident: const_fns_ident,
items: const_fns,
..})) = main_body.get(0) else {
return Err(Error::new(
item_mod_span,
"the first item in `exported_tokens` should be a trait called `ConstFns`.",
));
};
if const_fns_ident != "ConstFns" {
return Err(Error::new(const_fns_ident.span(), "expected `ConstFns`."));
}
let const_fns: Vec<TraitItemFn> = const_fns
.into_iter()
.map(|item| match item {
TraitItem::Fn(trait_item_fn) => Ok(trait_item_fn.clone()),
_ => return Err(Error::new(item.span(), "expected `fn`")), // can't do this
})
.collect::<std::result::Result<_, Self::Error>>()?;
let Some(Item::Fn(ItemFn { sig: Signature {
ident: trait_impl_generics_ident,
generics: trait_impl_generics,
..
}, .. })) = main_body.get(1) else {
return Err(Error::new(
item_mod_span,
"the second item in `exported_tokens` should be an fn called `trait_impl_generics`.",
));
};
if trait_impl_generics_ident != "trait_impl_generics" {
return Err(Error::new(
trait_impl_generics_ident.span(),
"expected `trait_impl_generics`.",
));
}
let Some(Item::Fn(ItemFn { sig: Signature {
ident: trait_use_generics_ident,
generics: trait_use_generics,
..
}, .. })) = main_body.get(2) else {
return Err(Error::new(
item_mod_span,
"the third item in `exported_tokens` should be an fn called `trait_use_generics`.",
));
};
if trait_use_generics_ident != "trait_use_generics" {
return Err(Error::new(
trait_use_generics_ident.span(),
"expected `trait_use_generics`.",
));
}
let Some(Item::Fn(ItemFn { sig: Signature {
ident: default_impl_generics_ident,
generics: default_impl_generics,
..
}, .. })) = main_body.get(3) else {
return Err(Error::new(
item_mod_span,
"the fourth item in `exported_tokens` should be an fn called `default_impl_generics`.",
));
};
if default_impl_generics_ident != "default_impl_generics" {
return Err(Error::new(
default_impl_generics_ident.span(),
"expected `default_impl_generics`.",
));
}
let Some(Item::Fn(ItemFn { sig: Signature {
ident: default_use_generics_ident,
generics: default_use_generics,
..
}, .. })) = main_body.get(4) else {
return Err(Error::new(
item_mod_span,
"the fifth item in `exported_tokens` should be an fn called `default_use_generics`.",
));
};
if default_use_generics_ident != "default_use_generics" {
return Err(Error::new(
default_use_generics_ident.span(),
"expected `default_use_generics`.",
));
}
let Some(Item::Mod(default_items_mod)) = main_body.get(5) else {
return Err(Error::new(
item_mod_span,
"the sixth item in `exported_tokens` should be a module called `default_items_mod`.",
));
};
if default_items_mod.ident != "default_items" {
return Err(Error::new(
default_items_mod.ident.span(),
"expected `default_items`.",
));
}
let Some((_, default_items)) = default_items_mod.content.clone() else {
return Err(Error::new(
default_items_mod.ident.span(),
"`default_items` item must be an inline module.",
));
};
let default_items: Vec<TraitItem> = default_items
.iter()
.map(|item| parse_quote!(#item))
.collect();
let Some(Item::Const(sealed_const)) = main_body.get(6) else {
return Err(Error::new(
item_mod_span,
"the seventh item in `exported_tokens` should be a const specifying the sealed ident.",
));
};
let sealed_ident = sealed_const.ident.clone();
Ok(ImportedTokens {
const_fns,
trait_impl_generics: trait_impl_generics.clone(),
trait_use_generics: trait_use_generics.clone(),
default_impl_generics: default_impl_generics.clone(),
default_use_generics: default_use_generics.clone(),
default_items: default_items,
sealed_ident,
})
}
}
trait GetIdent {
fn get_ident(&self) -> Option<Ident>;
}
impl GetIdent for TraitItem {
fn get_ident(&self) -> Option<Ident> {
use TraitItem::*;
match self {
Const(item_const) => Some(item_const.ident.clone()),
Fn(item_fn) => Some(item_fn.sig.ident.clone()),
Type(item_type) => Some(item_type.ident.clone()),
_ => None,
}
}
}
impl GetIdent for ImplItem {
fn get_ident(&self) -> Option<Ident> {
use ImplItem::*;
match self {
Const(item_const) => Some(item_const.ident.clone()),
Fn(item_fn) => Some(item_fn.sig.ident.clone()),
Type(item_type) => Some(item_type.ident.clone()),
_ => None,
}
}
}
trait FlattenGroups {
fn flatten_groups(&self) -> TokenStream2;
}
impl FlattenGroups for TokenStream2 {
fn flatten_groups(&self) -> TokenStream2 {
let mut iter = self.clone().into_iter();
let mut final_tokens = TokenStream2::new();
while let Some(token) = iter.next() {
if let TokenTree::Group(group) = &token {
let flattened = group.stream().flatten_groups();
final_tokens.extend(quote!(<#flattened>));
continue;
}
final_tokens.extend([token]);
}
final_tokens
}
}
trait ForceGetIdent: ToTokens {
fn force_get_ident(&self) -> Ident {
let mut iter = self.to_token_stream().flatten_groups().into_iter();
let mut final_tokens = TokenStream2::new();
while let Some(token) = iter.next() {
let mut tmp = final_tokens.clone();
tmp.extend([token.clone()]);
if parse2::<Ident>(tmp).is_ok() {
final_tokens.extend([token]);
}
}
parse_quote!(#final_tokens)
}
}
trait StripTrailingGenerics {
fn strip_trailing_generics(&self) -> Self;
}
impl StripTrailingGenerics for Path {
fn strip_trailing_generics(&self) -> Self {
let mut tmp = self.clone();
let Some(last) = tmp.segments.last_mut() else { unreachable!() };
let ident = last.ident.clone();
*last = parse_quote!(#ident);
tmp
}
}
impl<T: ToTokens> ForceGetIdent for T {}
fn merge_generics(a: &Generics, b: &Generics) -> Generics {
let mut params = b.params.clone();
params.extend(a.params.clone());
let where_clause = match &a.where_clause {
Some(a_where) => match &b.where_clause {
Some(b_where) => {
let mut combined_where = b_where.clone();
combined_where.predicates.extend(a_where.predicates.clone());
Some(combined_where)
}
None => a.where_clause.clone(),
},
None => b.where_clause.clone(),
};
Generics {
lt_token: b.lt_token.clone(),
params,
gt_token: b.gt_token.clone(),
where_clause: where_clause,
}
}
struct ReplaceSelfAssociatedType {
replace_prefix: TokenStream2,
}
impl VisitMut for ReplaceSelfAssociatedType {
fn visit_type_path_mut(&mut self, type_path: &mut TypePath) {
if type_path.path.segments.len() < 2 {
return;
}
let first_seg = type_path.path.segments.first().unwrap();
if first_seg.ident != "Self" {
return;
}
let segments = type_path.path.segments.iter().skip(1);
let replace = self.replace_prefix.clone();
*type_path = parse_quote!(#replace::#(#segments)::*)
}
}
struct ReplaceType {
search_type: RemappedGeneric,
replace_type: GenericParam,
}
impl VisitMut for ReplaceType {
fn visit_ident_mut(&mut self, ident: &mut Ident) {
let search_ident = self.search_type.ident();
if ident != search_ident {
return;
}
*ident = self.replace_type.force_get_ident();
}
}
struct ReplaceSelfType {
replace_type: Ident,
}
impl VisitMut for ReplaceSelfType {
fn visit_ident_mut(&mut self, ident: &mut Ident) {
if ident != "Self" {
return;
}
*ident = self.replace_type.clone();
}
}
#[derive(Clone, PartialEq, Eq, Hash, Debug, PartialOrd, Ord)]
enum RemappedGeneric {
Lifetime(Ident),
Type(Ident),
Const(Ident),
}
impl RemappedGeneric {
fn ident(&self) -> &Ident {
match self {
RemappedGeneric::Lifetime(ident) => ident,
RemappedGeneric::Type(ident) => ident,
RemappedGeneric::Const(ident) => ident,
}
}
}
fn impl_supertrait_internal(
foreign_tokens: impl Into<TokenStream2>,
item_tokens: impl Into<TokenStream2>,
) -> Result<TokenStream2> {
let mut item_impl = parse2::<ItemImpl>(item_tokens.into())?;
#[cfg(feature = "debug")]
let mut debug = false;
#[cfg(feature = "debug")]
for (i, attr) in item_impl.attrs.iter().enumerate() {
let Some(ident) = attr.path().get_ident() else { continue };
if ident == "debug_mode" {
debug = true;
item_impl.attrs.remove(i);
break;
}
}
let Some((_, trait_path, _)) = &mut item_impl.trait_ else {
return Err(Error::new(
item_impl.span(),
"#[impl_supertrait] can only be attached to non-inherent impls involving a trait \
that has `#[supertrait]` attached to it."
));
};
let impl_target = item_impl.self_ty.clone();
let ImportedTokens {
const_fns,
trait_impl_generics,
trait_use_generics: _,
default_impl_generics,
default_use_generics,
default_items,
sealed_ident,
} = ImportedTokens::try_from(parse2::<ItemMod>(foreign_tokens.into())?)?;
let mut remapped_type_params: HashMap<RemappedGeneric, GenericParam> = HashMap::new();
for (i, param) in trait_impl_generics.params.iter().enumerate() {
let remapped = match param {
GenericParam::Lifetime(lifetime) => {
RemappedGeneric::Lifetime(lifetime.lifetime.ident.clone())
}
GenericParam::Type(typ) => RemappedGeneric::Type(typ.ident.clone()),
GenericParam::Const(constant) => RemappedGeneric::Const(constant.ident.clone()),
};
let last_seg = trait_path.segments.last().unwrap();
let args: Vec<TokenStream2> = match last_seg.arguments.clone() {
syn::PathArguments::None => continue,
syn::PathArguments::AngleBracketed(args) => {
args.args.into_iter().map(|a| a.to_token_stream()).collect()
}
syn::PathArguments::Parenthesized(args) => args
.inputs
.into_iter()
.map(|a| a.to_token_stream())
.collect(),
};
if i >= args.len() {
continue;
}
let target = args[i].clone();
let target: GenericParam = parse_quote!(#target);
remapped_type_params.insert(remapped, target);
}
// replace Self type with type we are implementing on
remapped_type_params.insert(
RemappedGeneric::Type(parse_quote!(__Self)),
parse_quote!(#impl_target),
);
let trait_mod = trait_path.clone().strip_trailing_generics();
let trait_mod_ident = trait_mod.segments.last().unwrap().ident.clone();
trait_path.segments.insert(
trait_path.segments.len() - 1,
parse_quote!(#trait_mod_ident),
);
trait_path.segments.last_mut().unwrap().ident = parse_quote!(Trait);
// strip default generics from default_use_generics
let mut filtered_tmp = FilteredGenerics {
impl_generics: default_impl_generics,
use_generics: default_use_generics,
has_defaults: HashSet::new(),
};
filtered_tmp.strip_default_generics();
let default_use_generics = filtered_tmp.use_generics;
let mut final_items: HashMap<Ident, ImplItem> = HashMap::new();
for item in default_items {
let item_ident = item.get_ident().unwrap();
let mut item: ImplItem = parse_quote!(#item);
use ImplItem::*;
match &mut item {
Const(item_const) => {
item_const.expr = parse_quote!(<#trait_mod::Defaults as #trait_mod::DefaultTypes #default_use_generics>::#item_ident)
}
Type(item_type) => {
item_type.ty = parse_quote!(<#trait_mod::Defaults as #trait_mod::DefaultTypes #default_use_generics>::#item_ident)
}
_ => unimplemented!("this item has no notion of defaults"),
}
for search in remapped_type_params.keys() {
let replace = &remapped_type_params[search];
let mut visitor = ReplaceType {
search_type: search.clone(),
replace_type: replace.clone(),
};
visitor.visit_impl_item_mut(&mut item);
}
if item_ident == "__Self" {
item = parse_quote!(#impl_target);
}
final_items.insert(item_ident, item);
}
let mut final_verbatim_items: Vec<ImplItem> = Vec::new();
for item in &item_impl.items {
let Some(item_ident) = item.get_ident() else {
final_verbatim_items.push(item.clone());
continue;
};
final_items.insert(item_ident, item.clone());
}
let mut final_items = final_items.values().cloned().collect::<Vec<_>>();
final_items.extend(final_verbatim_items);
item_impl.items = final_items;
let mut impl_const_fn_idents: HashSet<Ident> = HashSet::new();
let mut impl_const_fns: Vec<ImplItem>;
(impl_const_fns, item_impl.items) = item_impl.items.into_iter().partition(|item| {
let ImplItem::Fn(impl_item_fn) = item else { return false };
if impl_item_fn.sig.constness.is_none() {
return false;
};
impl_const_fn_idents.insert(impl_item_fn.sig.ident.clone());
true
});
for item in &const_fns {
if !impl_const_fn_idents.contains(&item.sig.ident) {
if item.default.is_none() {
return Err(Error::new(
item_impl.span(),
format!("missing impl for `{}`.", item.sig.ident),
));
}
impl_const_fns.push(parse_quote!(#item));
}
}
for const_fn in impl_const_fns.iter_mut() {
let mut last_seg = trait_path.segments.last().unwrap().clone();
last_seg.ident = parse_quote!(Trait);
let mut visitor = ReplaceSelfAssociatedType {
replace_prefix: quote!(<#impl_target as #trait_mod::#last_seg>),
};
visitor.visit_impl_item_mut(const_fn);
let ImplItem::Fn(const_fn) = const_fn else { unreachable!() };
const_fn.vis = parse_quote!(pub);
}
let impl_index = IMPL_COUNT.fetch_add(1, std::sync::atomic::Ordering::SeqCst);
let trait_import_name: Ident = format_ident!(
"{}{}TraitImpl_{}",
impl_target.clone().force_get_ident(),
item_impl.trait_.clone().unwrap().1.force_get_ident(),
impl_index,
);
let converted_const_fns = impl_const_fns.iter().map(|const_fn| {
let mut const_fn: ImplItemFn = parse_quote!(#const_fn);
const_fn.sig.constness = None;
const_fn.vis = Visibility::Inherited;
let item: ImplItem = parse_quote!(#const_fn);
item
});
let impl_const_fns = impl_const_fns.iter().map(|const_fn| {
let mut const_fn_visitor = FindGenericParam::new(&trait_impl_generics);
const_fn_visitor.visit_impl_item(const_fn);
let const_fn_generics =
filter_generics(&trait_impl_generics, &const_fn_visitor.usages).impl_generics;
let mut const_fn: ImplItemFn = parse_quote!(#const_fn);
const_fn.sig.generics = merge_generics(&const_fn_generics, &const_fn.sig.generics);
const_fn.sig.generics.params = const_fn
.sig
.generics
.params
.iter()
.cloned()
.map(|g| match g {
GenericParam::Lifetime(lifetime) => GenericParam::Lifetime(lifetime),
GenericParam::Type(typ) => {
let mut typ = typ.clone();
typ.default = None;
GenericParam::Type(typ)
}
GenericParam::Const(constant) => {
let mut constant = constant.clone();
constant.default = None;
GenericParam::Const(constant)
}
})
.collect();
const_fn
});
item_impl.items.extend(converted_const_fns);
let mut impl_visitor = FindGenericParam::new(&item_impl.generics);
impl_visitor.visit_item_impl(&item_impl);
let mut filtered_generics = filter_generics(&item_impl.generics, &impl_visitor.usages);
filtered_generics.strip_default_generics();
item_impl.generics = filtered_generics.impl_generics;
let inherent_impl = if impl_const_fns.len() > 0 {
Some(quote! {
// const fn implementations
impl #impl_target {
#(#impl_const_fns)*
}
})
} else {
None
};
let output = quote! {
#item_impl
impl #trait_mod::#sealed_ident for #impl_target {}
#inherent_impl
#[doc(hidden)]
#[allow(unused)]
use #trait_mod::Trait as #trait_import_name;
};
#[cfg(feature = "debug")]
if debug {
output.pretty_print();
}
Ok(output)
}