1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
//! `SumQueue` it's a queue struct that keeps a fixed number of
//! items by time, not capacity, similar to a cache, but with a simpler
//! and faster implementation. It also allows to get summarized stats
//! of the values on it at any time.
//! 
//! ## Examples
//! 
//! ```
//! use sum_queue::SumQueue;
//! use std::{time, thread};
//! 
//! // creates a queue where elements expire after 2 seconds
//! let mut queue: SumQueue<i32> = SumQueue::new(2);
//! queue.push(1);
//! queue.push(10);
//! queue.push(3);
//! 
//! // Check the peek without removing the element
//! assert_eq!(queue.peek(), Some(&1));
//! // elements are removed in the same order were pushed
//! assert_eq!(queue.pop(), Some(1));
//! assert_eq!(queue.pop(), Some(10));
//! assert_eq!(queue.pop(), Some(3));
//! assert_eq!(queue.pop(), None);
//!
//! // Lets puts elements again
//! queue.push(1);
//! queue.push(5);
//! queue.push(2);
//! // Elements can be iterated as many times as you want
//! println!("heap data: {:?}", queue.iter().collect::<Vec<_>>());  // [1, 5, 2]
//! 
//! // Check stats
//! let stats = queue.stats();
//! println!("Stats - min value in queue: {}", stats.min.unwrap());         // 1
//! println!("Stats - max value in queue: {}", stats.max.unwrap());         // 5
//! println!("Stats - sum all values in queue: {}", stats.sum.unwrap());    // 8
//! println!("Stats - length of queue: {}", stats.len);                     // 3
//! 
//! assert_eq!(queue.pop(), Some(1));
//! assert_eq!(queue.iter().collect::<Vec<_>>(), vec![&5, &2]);
//! 
//! // After a second the elements are still the same
//! thread::sleep(time::Duration::from_secs(1));
//! println!("Same elements: {:?}", queue.iter().collect::<Vec<_>>());      // [5, 2]
//! 
//! queue.push(50); // Add an element 1 second younger than the rest of elements
//! println!("Same elements + 50: {:?}", queue.iter().collect::<Vec<_>>()); // [5, 2, 50]
//! 
//! // Now let sleep 2 secs so the first elements expire
//! thread::sleep(time::Duration::from_secs(2));
//! println!("Just 50: {:?}", queue.iter().collect::<Vec<_>>());            // [50]
//! 
//! // 2 seconds later the last element also expires
//! thread::sleep(time::Duration::from_secs(2));
//! println!("No elements: {:?}", queue.iter().collect::<Vec<_>>());        // []
//! ```
//!
//! ## Implementation
//!
//! Underneath uses a [`BinaryHeap`] struct to keep the values,
//! and implements the same methods: `push()`, `pop()`, `peek()` ...
//! although worth to note that the implementations of the `SumQueue` type take mutable
//! ownership of the `self` reference (eg. `peek(&mut self) -> Option<&T>`). That is
//! because the cleaning of the expired elements of the queue occurs each time
//! a method is called to read or write a value, including the `len()` method.
//!
//! So as long you manage only one instance of `SumQueue`, there is no
//! risk of excessive memory allocation, because while you push elements with the `push()`
//! method, or call any other method to read the queue you are taking care of removing
//! and deallocating the expired elements, but if you are using multiple instances, and
//! pushing too many items to some queues and not accessing others further, the memory usage
//! may growth with elements expired not been deallocated because you are not accessing
//! those queues to push, pop or get the stats of them. In that case you can at least
//! try to call often to the `len()` method to force the unused queues to remove and
//! deallocate the expired elements.

use std::cmp::Ordering;
use std::collections::BinaryHeap;
use std::collections::binary_heap;
use std::ops::Add;
use std::time::{SystemTime, UNIX_EPOCH};

/// Internal element used by `SumQueue` to hold the values.
struct QueueElement<T> {
    time: u64,  // "Unix" Time, or seconds since EPOCH when the value was added
    value: T
}

/// Stats of the queue.
///
/// It provides the following statistics: **min** and **max** value
/// in the queue, the **sum** of all the values and the **length**
/// of all elements hold in the queue.
///
/// The values are computed taking into account only
/// the existent elements in the queue, and not past
/// elements removed because expiration or because
/// they were removed.
///
/// You can get the stats object calling to
/// the [`SumQueue::stats()`] method of the queue:
///
/// ```
/// use sum_queue::SumQueue;
/// let mut queue = SumQueue::new(1000);
/// queue.push(-1);
/// queue.push(5);
/// queue.push(2);
/// let stats = queue.stats();
/// assert_eq!(stats.min, Some(-1));
/// assert_eq!(stats.max, Some(5));
/// assert_eq!(stats.sum, Some(6));
/// assert_eq!(stats.len, 3);
/// ```
///
/// But you can also get the stats
/// while pushing elements, which it's more
/// effecient than push and then get the stats:
///
/// ```
/// use sum_queue::SumQueue;
/// let mut queue = SumQueue::new(1000);
/// queue.push(-1);
/// queue.push(5);
/// let stats = queue.push_and_stats(2);
/// assert_eq!(stats.min, Some(-1));
/// assert_eq!(stats.max, Some(5));
/// assert_eq!(stats.sum, Some(6));
/// assert_eq!(stats.len, 3);
/// ```
pub struct QueueStats<T: Ord + Add<Output = T>> {
    /// min value of the queue
    pub min: Option<T>,
    /// max value of the queue
    pub max: Option<T>,
    /// sum of all the values in the queue
    pub sum: Option<T>,
    /// size of the queue, same than [`SumQueue::len()`]
    pub len: usize
}

impl<T> PartialEq for QueueElement<T> {
    fn eq(&self, other: &Self) -> bool {
        self.time == other.time
    }
}
impl<T> Eq for QueueElement<T> {}

impl<T> Ord for QueueElement<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        //! Reverse order to set lower number higher
        other.time.cmp(&self.time)
    }
}

impl<T> PartialOrd for QueueElement<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

fn now() -> u64 {
    SystemTime::now().duration_since(UNIX_EPOCH)
        .expect("<-- Time went backwards").as_secs()
}

/// Main struct that holds the queue of elements.
///
/// There are different ways to create the queue:
///
/// ```
/// use sum_queue::SumQueue;
/// let mut queue: SumQueue<i32>;
///
/// // Create a queue with elements that expires after 60 seconds
/// queue = SumQueue::new(60);
/// // Create with 60 secs expiration and an initial capacity of 20 elements
/// queue = SumQueue::with_capacity(60, 20);
/// ```
pub struct SumQueue<T> {
    /// the heap with the data
    heap: BinaryHeap<QueueElement<T>>,
    /// max time in seconds the elements will
    /// live in the queue.
    max_age: u64
}

impl<T> SumQueue<T> {
    /// Creates an empty `SumQueue`, where the elements inside
    /// will live `max_age_secs` seconds at maximum.
    pub fn new(max_age_secs: u64) -> SumQueue<T> {
        SumQueue {
            heap: BinaryHeap::<QueueElement<T>>::new(),
            max_age: max_age_secs
        }
    }

    /// Creates an empty `SumQueue` with a specific initial capacity.
    /// This preallocates enough memory for `capacity` elements,
    /// so that the [`BinaryHeap`] inside the `SumQueue` does not have
    /// to be reallocated until it contains at least that many values.
    /// The elements inside the queue will live `max_age_secs` seconds at maximum.
    pub fn with_capacity(max_age_secs: u64, capacity: usize) -> SumQueue<T> {
        SumQueue {
            heap: BinaryHeap::<QueueElement<T>>::with_capacity(capacity),
            max_age: max_age_secs
        }
    }

    /// Pushes an item onto the heap of the queue.
    ///
    /// See [`BinaryHeap::push`] to known more about the time complexity.
    ///
    /// It returns the size of the queue, and before the element is pushed to the heap,
    /// it also drops all expired elements in the queue.
    ///
    /// ```
    /// use sum_queue::SumQueue;
    /// let mut queue = SumQueue::new(60);
    /// queue.push(1);
    /// queue.push(5);
    /// assert_eq!(queue.push(2), 3);
    /// assert_eq!(queue.iter().collect::<Vec<_>>(), vec![&1, &5, &2]);
    /// ```
    pub fn push(&mut self, item: T) -> usize {
        let now = now();
        self.clear_oldest(now);
        self.heap.push(QueueElement {
            time: now,
            value: item
        });
        self.heap.len()
    }

    fn clear_oldest(&mut self, now: u64) {
        while let Some(el) = self.heap.peek() {
            let peek_age = now - el.time;
            if peek_age > self.max_age {
                self.heap.pop();
            } else {
                break;
            }
        }
    }

    /// Drops all items.
    pub fn clear(&mut self) {
        self.heap.clear();
    }

    /// Returns the length of the heap.
    ///
    /// It takes a mutable reference of `self` because
    /// before return the size it also cleans all the
    /// expired elements of the queue, so only
    /// no expired elements are count.
    pub fn len(&mut self) -> usize {
        self.clear_oldest(now());
        self.heap.len()
    }

    /// Checks if the heap is empty. Expired elements are not taken
    /// into account because are droped by `is_empty()` before
    /// return the result.
    ///
    /// ```
    /// use sum_queue::SumQueue;
    /// use std::{time, thread};
    /// let mut queue = SumQueue::new(1);
    ///
    /// assert!(queue.is_empty());
    ///
    /// queue.push(123);
    /// queue.push(555);
    ///
    /// assert!(!queue.is_empty());
    ///
    /// thread::sleep(time::Duration::from_secs(2));
    ///
    /// assert!(queue.is_empty());
    /// ```
    pub fn is_empty(&mut self) -> bool {
        self.len() == 0
    }

    /// Returns the number of elements the heap can hold without reallocating.
    ///
    /// ```
    /// use sum_queue::SumQueue;
    /// let mut queue: SumQueue<char> = SumQueue::with_capacity(60, 5);
    /// assert_eq!(queue.capacity(), 5);
    /// assert_eq!(queue.len(), 0);
    /// ```
    pub fn capacity(&self) -> usize {
        self.heap.capacity()
    }

    /// Returns the max time in seconds the elements will live in the queue.
    ///
    /// ```
    /// use sum_queue::SumQueue;
    /// let mut queue: SumQueue<char> = SumQueue::new(60);
    /// assert_eq!(queue.max_age(), 60);
    /// ```
    pub fn max_age(&self) -> u64 {
        self.max_age
    }

    /// Returns the first item in the heap, or `None` if it is empty.
    ///
    /// Before the element is returned, it also drops all expired
    /// elements from the queue.
    ///
    /// ```
    /// use sum_queue::SumQueue;
    /// let mut queue = SumQueue::new(60);
    /// assert_eq!(queue.peek(), None);
    /// queue.push("Hello");
    /// queue.push("World");
    /// queue.push("!");
    /// assert_eq!(queue.peek(), Some(&"Hello"));
    /// ```
    pub fn peek(&mut self) -> Option<&T> {
        self.clear_oldest(now());
        self.heap.peek().map( |q_element| &q_element.value)
    }

    /// Removes the first item from the heap and returns it, or `None` if it
    /// is empty.
    ///
    /// Before the element is dropped from the queue and returned,
    /// it also drops all expired elements.
    ///
    /// ```
    /// use sum_queue::SumQueue;
    /// let mut queue = SumQueue::with_capacity(60, 5);
    /// assert_eq!(queue.pop(), None);
    /// queue.push('a');
    /// queue.push('x');
    /// queue.push('c');
    /// assert_eq!(queue.pop(), Some('a'));
    /// assert_eq!(queue.pop(), Some('x'));
    /// assert_eq!(queue.pop(), Some('c'));
    /// assert_eq!(queue.pop(), None);
    /// ```
    pub fn pop(&mut self) -> Option<T> {
        self.clear_oldest(now());
        self.heap.pop().map( |q_element| q_element.value)
    }

    /// Returns an iterator visiting all values in the underlying heap, in
    /// same order they were pushed.
    ///
    /// Before return the iterator, it also drops all expired elements.
    ///
    /// The iterator does not change the state of the queue, this
    /// method takes ownership of the queue because as mentioned above
    /// it clears the expired elements before return the iterator, even
    /// if the iterator is not consumed later on.
    ///
    /// ```
    /// use sum_queue::SumQueue;
    /// let mut queue = SumQueue::new(60);
    /// queue.push('a');
    /// queue.push('z');
    /// queue.push('x');
    /// assert_eq!(queue.iter().collect::<Vec<_>>(), vec![&'a', &'z', &'x']);
    /// ```
    pub fn iter(&mut self) -> Iter<'_, T> {
        self.clear_oldest(now());
        Iter { iter: self.heap.iter() }
    }
}

impl<T: Copy + Ord + Add<Output = T>> SumQueue<T> {

    fn _stats(&mut self, len: usize) -> QueueStats<T> {
        let mut min = None; let mut max = None; let mut sum = None;
        for i in self.heap.iter().map(|x| x.value) {
            if min == None || Some(i) < min {
                min = Some(i);
            }
            if max == None || Some(i) > max {
                max = Some(i);
            }
            sum = match sum {
                Some(s) => Some(s + i),
                None => Some(i)
            };
        }
        QueueStats {
            min, max, sum, len
        }
    }

    /// Get statistics of the queue. The type of the elements
    /// on it needs to implements the `Copy`, `Ord` and `Add` traits.
    ///
    /// Before the stats are returned, it also drops all expired elements.
    ///
    /// ```
    /// use sum_queue::SumQueue;
    /// let mut queue: SumQueue<i64> = SumQueue::new(1000);
    /// queue.push(-10);
    /// queue.push(50);
    /// queue.push(40);
    /// queue.push(20);
    /// let stats = queue.stats();
    /// assert_eq!(stats.min, Some(-10));
    /// assert_eq!(stats.max, Some(50));
    /// assert_eq!(stats.sum, Some(100));
    /// assert_eq!(stats.len, 4);
    /// ```
    ///
    /// See also `push_and_stats`.
    pub fn stats(&mut self) -> QueueStats<T> {
        let len = self.len();
        self._stats(len)
    }

    /// Pushes an item onto the heap of the queue, and returns
    /// the stats of the queue. The type of the elements
    /// on it need to implements the `Copy`, `Ord` and `Add`
    /// traits.
    ///
    /// Before push and return the stats, it also drops all expired elements.
    ///
    /// ```
    /// use sum_queue::SumQueue;
    /// let mut queue: SumQueue<i64> = SumQueue::new(1000);
    /// queue.push(-10);
    /// queue.push(50);
    /// queue.push(40);
    /// let stats = queue.push_and_stats(20);
    /// assert_eq!(stats.min, Some(-10));
    /// assert_eq!(stats.max, Some(50));
    /// assert_eq!(stats.sum, Some(100));
    /// assert_eq!(stats.len, 4);
    /// ```
    ///
    /// Use `push` instead if you don't need the stats
    /// or the elements in the heap don't implement
    /// any of the required traits.
    pub fn push_and_stats(&mut self, item: T) -> QueueStats<T> {
        let len = self.push(item);
        self._stats(len)
    }
}

/// An iterator over the elements of a `SumQueue`.
///
/// This `struct` is created by [`SumQueue::iter()`]. See its
/// documentation for more.
pub struct Iter<'a, T: 'a> {
    iter: binary_heap::Iter<'a, QueueElement<T>>,
}

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        let element = self.iter.next()?;
        Some(&element.value)
    }
}

mod tests {
    pub use std::thread;
    pub use std::time::Duration;
    pub use crate::SumQueue;

    #[test]
    fn push_pop_peek() {
        let mut queue: SumQueue<i32> = SumQueue::new(60);
        queue.push(1);
        queue.push(5);
        assert_eq!(queue.push(2), 3);  // push return queue length
        assert_eq!(queue.peek(), Some(&1));
        assert_eq!(queue.peek(), Some(&1));  // still the same
        assert_eq!(queue.pop(), Some(1));
        assert_eq!(queue.pop(), Some(5));
        assert_eq!(queue.pop(), Some(2));
        assert_eq!(queue.pop(), None);
        assert_eq!(queue.peek(), None);
        queue.push(1_000);
        assert_eq!(queue.peek(), Some(&1_000));
    }

    #[test]
    fn push_pop_peek_refs() {
        let mut queue: SumQueue<&i32> = SumQueue::new(60);
        queue.push(&1);
        queue.push(&5);
        assert_eq!(queue.push(&2), 3);
        assert_eq!(queue.peek(), Some(&&1));
        assert_eq!(queue.peek(), Some(&&1));
        assert_eq!(queue.pop(), Some(&1));
        assert_eq!(queue.pop(), Some(&5));
        assert_eq!(queue.pop(), Some(&2));
        assert_eq!(queue.pop(), None);
        assert_eq!(queue.peek(), None);
        queue.push(&1_000);
        assert_eq!(queue.peek(), Some(&&1_000));
    }

    #[test]
    fn len_clear() {
        let mut queue: SumQueue<char> = SumQueue::with_capacity(60, 2); // small capacity shouldn't be a problem
        assert_eq!(queue.len(), 0);
        queue.push('a');
        queue.push('b');
        queue.push('c');
        assert_eq!(queue.len(), 3);
        queue.pop();
        assert_eq!(queue.len(), 2);
        queue.clear();
        assert_eq!(queue.len(), 0);
        queue.push('$');
        assert_eq!(queue.len(), 1);
    }

    #[test]
    fn iter() {
        let mut queue: SumQueue<&str> = SumQueue::with_capacity(60, 20);
        queue.push("Hey");
        queue.push("You");
        queue.push("!");
        println!("heap data with &str references: {:?}", queue.iter().collect::<Vec<_>>());
        // data can be iterated as many time as you want
        assert_eq!(queue.iter().collect::<Vec<_>>(), vec![&"Hey", &"You", &"!"]);
        print!("heap data, iterate one by one... :");
        for word in queue.iter() {  // iterate one by one don't crash
            print!(" {}", word)
        }
        println!();
    }

    #[test]
    fn expire() {
        let max_age_secs = 2;
        let mut queue: SumQueue<i32> = SumQueue::with_capacity(max_age_secs, 20);
        queue.push(1);
        queue.push(5);
        queue.push(2);
        assert_eq!(queue.iter().collect::<Vec<_>>(), vec![&1, &5, &2]);
        println!("Elements in queue with max age of {} secs: {:?}",
                 max_age_secs, queue.iter().collect::<Vec<_>>());

        sleep_secs(1);
        assert_eq!(queue.iter().collect::<Vec<_>>(), vec![&1, &5, &2]);
        println!("No expiration yet, same elements: {:?}", queue.iter().collect::<Vec<_>>());

        println!("\nAdding element 50 ...");
        queue.push(50);
        assert_eq!(queue.iter().collect::<Vec<_>>(), vec![&1, &5, &2, &50]);
        println!("Same elements + 50: {:?}", queue.iter().collect::<Vec<_>>());

        sleep_secs(2);
        assert_eq!(queue.iter().collect::<Vec<_>>(), vec![&50]);
        println!("Expired original list, only 50 in the list: {:?}",
                 queue.iter().collect::<Vec<_>>());

        sleep_secs(2);
        assert_eq!(queue.iter().collect::<Vec<_>>().len(), 0);
        println!("No elements kept: {:?}", queue.iter().collect::<Vec<_>>());
    }

    #[test]
    fn stats() {
        let mut queue: SumQueue<i64> = SumQueue::new(1000);
        let mut stats = queue.stats();
        assert_eq!(stats.min, None);
        assert_eq!(stats.max, None);
        assert_eq!(stats.sum, None);
        assert_eq!(stats.len, 0);

        queue.push(-10);
        queue.push(50);
        queue.push(20);
        queue.push(20);
        stats = queue.stats();
        assert_eq!(stats.min, Some(-10));
        assert_eq!(stats.max, Some(50));
        assert_eq!(stats.sum, Some(80));
        assert_eq!(stats.len, 4);

        queue.clear();
        stats = queue.stats();
        assert_eq!(stats.min, None);
        assert_eq!(stats.max, None);
        assert_eq!(stats.sum, None);
        assert_eq!(stats.len, 0);

        queue.push(100_000);
        stats = queue.stats();
        assert_eq!(stats.min, Some(100_000));
        assert_eq!(stats.max, Some(100_000));
        assert_eq!(stats.sum, Some(100_000));
        assert_eq!(stats.len, 1);

        queue.push(5);
        stats = queue.push_and_stats(1);
        assert_eq!(stats.min, Some(1));
        assert_eq!(stats.max, Some(100_000));
        assert_eq!(stats.sum, Some(100_006));
        assert_eq!(stats.len, 3);
    }

    #[cfg(test)]
    fn sleep_secs(dur_secs: u64) {
        println!("\nSleeping {} secs ...", dur_secs);
        thread::sleep(Duration::from_secs(dur_secs));
    }
}