1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Copyright 2019-2024 Parity Technologies (UK) Ltd.
// This file is dual-licensed as Apache-2.0 or GPL-3.0.
// see LICENSE for license details.

use super::utils::hash_bytes;
use crate::{
    error::{Error, MetadataError, StorageAddressError},
    utils::{Encoded, Static},
};
use alloc::vec;
use alloc::vec::Vec;
use derive_where::derive_where;
use scale_decode::visitor::IgnoreVisitor;
use scale_encode::EncodeAsType;
use scale_info::{PortableRegistry, TypeDef};
use scale_value::Value;
use subxt_metadata::{StorageEntryType, StorageHasher};

/// A collection of storage hashers paired with the type ids of the types they should hash.
/// Can be created for each storage entry in the metadata via [`StorageHashers::new()`].
#[derive(Debug)]
pub struct StorageHashers {
    hashers_and_ty_ids: Vec<(StorageHasher, u32)>,
}

impl StorageHashers {
    /// Creates new [`StorageHashers`] from a storage entry. Looks at the [`StorageEntryType`] and
    /// assigns a hasher to each type id that makes up the key.
    pub fn new(storage_entry: &StorageEntryType, types: &PortableRegistry) -> Result<Self, Error> {
        let mut hashers_and_ty_ids = vec![];
        if let StorageEntryType::Map {
            hashers, key_ty, ..
        } = storage_entry
        {
            let ty = types
                .resolve(*key_ty)
                .ok_or(MetadataError::TypeNotFound(*key_ty))?;

            if let TypeDef::Tuple(tuple) = &ty.type_def {
                if hashers.len() == 1 {
                    // use the same hasher for all fields, if only 1 hasher present:
                    let hasher = hashers[0];
                    for f in tuple.fields.iter() {
                        hashers_and_ty_ids.push((hasher, f.id));
                    }
                } else if hashers.len() < tuple.fields.len() {
                    return Err(StorageAddressError::WrongNumberOfHashers {
                        hashers: hashers.len(),
                        fields: tuple.fields.len(),
                    }
                    .into());
                } else {
                    for (i, f) in tuple.fields.iter().enumerate() {
                        hashers_and_ty_ids.push((hashers[i], f.id));
                    }
                }
            } else {
                if hashers.len() != 1 {
                    return Err(StorageAddressError::WrongNumberOfHashers {
                        hashers: hashers.len(),
                        fields: 1,
                    }
                    .into());
                }
                hashers_and_ty_ids.push((hashers[0], *key_ty));
            };
        }

        Ok(Self { hashers_and_ty_ids })
    }

    /// Creates an iterator over the storage hashers and type ids.
    pub fn iter(&self) -> StorageHashersIter<'_> {
        StorageHashersIter {
            hashers: self,
            idx: 0,
        }
    }
}

/// An iterator over all type ids of the key and the respective hashers.
/// See [`StorageHashers::iter()`].
#[derive(Debug)]
pub struct StorageHashersIter<'a> {
    hashers: &'a StorageHashers,
    idx: usize,
}

impl<'a> StorageHashersIter<'a> {
    fn next_or_err(&mut self) -> Result<(StorageHasher, u32), Error> {
        self.next().ok_or_else(|| {
            StorageAddressError::TooManyKeys {
                expected: self.hashers.hashers_and_ty_ids.len(),
            }
            .into()
        })
    }
}

impl<'a> Iterator for StorageHashersIter<'a> {
    type Item = (StorageHasher, u32);

    fn next(&mut self) -> Option<Self::Item> {
        let item = self.hashers.hashers_and_ty_ids.get(self.idx).copied()?;
        self.idx += 1;
        Some(item)
    }
}

impl<'a> ExactSizeIterator for StorageHashersIter<'a> {
    fn len(&self) -> usize {
        self.hashers.hashers_and_ty_ids.len() - self.idx
    }
}

/// This trait should be implemented by anything that can be used as one or multiple storage keys.
pub trait StorageKey {
    /// Encodes the storage key into some bytes
    fn encode_storage_key(
        &self,
        bytes: &mut Vec<u8>,
        hashers: &mut StorageHashersIter,
        types: &PortableRegistry,
    ) -> Result<(), Error>;

    /// Attempts to decode the StorageKey given some bytes and a set of hashers and type IDs that they are meant to represent.
    /// The bytes passed to `decode` should start with:
    /// - 1. some fixed size hash (for all hashers except `Identity`)
    /// - 2. the plain key value itself (for `Identity`, `Blake2_128Concat` and `Twox64Concat` hashers)
    fn decode_storage_key(
        bytes: &mut &[u8],
        hashers: &mut StorageHashersIter,
        types: &PortableRegistry,
    ) -> Result<Self, Error>
    where
        Self: Sized + 'static;
}

/// Implement `StorageKey` for `()` which can be used for keyless storage entries,
/// or to otherwise just ignore some entry.
impl StorageKey for () {
    fn encode_storage_key(
        &self,
        _bytes: &mut Vec<u8>,
        hashers: &mut StorageHashersIter,
        _types: &PortableRegistry,
    ) -> Result<(), Error> {
        _ = hashers.next_or_err();
        Ok(())
    }

    fn decode_storage_key(
        bytes: &mut &[u8],
        hashers: &mut StorageHashersIter,
        types: &PortableRegistry,
    ) -> Result<Self, Error> {
        let (hasher, ty_id) = match hashers.next_or_err() {
            Ok((hasher, ty_id)) => (hasher, ty_id),
            Err(_) if bytes.is_empty() => return Ok(()),
            Err(err) => return Err(err),
        };
        consume_hash_returning_key_bytes(bytes, hasher, ty_id, types)?;
        Ok(())
    }
}

/// A storage key for static encoded values.
/// The original value is only present at construction, but can be decoded from the contained bytes.
#[derive_where(Clone, Debug, PartialOrd, PartialEq, Eq)]
pub struct StaticStorageKey<K: ?Sized> {
    bytes: Static<Encoded>,
    _marker: core::marker::PhantomData<K>,
}

impl<K: codec::Encode + ?Sized> StaticStorageKey<K> {
    /// Creates a new static storage key
    pub fn new(key: &K) -> Self {
        StaticStorageKey {
            bytes: Static(Encoded(key.encode())),
            _marker: core::marker::PhantomData,
        }
    }
}

impl<K: codec::Decode + ?Sized> StaticStorageKey<K> {
    /// Decodes the encoded inner bytes into the type `K`.
    pub fn decoded(&self) -> Result<K, Error> {
        let decoded = K::decode(&mut self.bytes())?;
        Ok(decoded)
    }
}

impl<K: ?Sized> StaticStorageKey<K> {
    /// Returns the scale-encoded bytes that make up this key
    pub fn bytes(&self) -> &[u8] {
        &self.bytes.0 .0
    }
}

// Note: The ?Sized bound is necessary to support e.g. `StorageKey<[u8]>`.
impl<K: ?Sized> StorageKey for StaticStorageKey<K> {
    fn encode_storage_key(
        &self,
        bytes: &mut Vec<u8>,
        hashers: &mut StorageHashersIter,
        types: &PortableRegistry,
    ) -> Result<(), Error> {
        let (hasher, ty_id) = hashers.next_or_err()?;
        let encoded_value = self.bytes.encode_as_type(ty_id, types)?;
        hash_bytes(&encoded_value, hasher, bytes);
        Ok(())
    }

    fn decode_storage_key(
        bytes: &mut &[u8],
        hashers: &mut StorageHashersIter,
        types: &PortableRegistry,
    ) -> Result<Self, Error>
    where
        Self: Sized + 'static,
    {
        let (hasher, ty_id) = hashers.next_or_err()?;
        let key_bytes = consume_hash_returning_key_bytes(bytes, hasher, ty_id, types)?;

        // if the hasher had no key appended, we can't decode it into a `StaticStorageKey`.
        let Some(key_bytes) = key_bytes else {
            return Err(StorageAddressError::HasherCannotReconstructKey { ty_id, hasher }.into());
        };

        // Return the key bytes.
        let key = StaticStorageKey {
            bytes: Static(Encoded(key_bytes.to_vec())),
            _marker: core::marker::PhantomData::<K>,
        };
        Ok(key)
    }
}

impl StorageKey for Vec<scale_value::Value> {
    fn encode_storage_key(
        &self,
        bytes: &mut Vec<u8>,
        hashers: &mut StorageHashersIter,
        types: &PortableRegistry,
    ) -> Result<(), Error> {
        for value in self.iter() {
            let (hasher, ty_id) = hashers.next_or_err()?;
            let encoded_value = value.encode_as_type(ty_id, types)?;
            hash_bytes(&encoded_value, hasher, bytes);
        }
        Ok(())
    }

    fn decode_storage_key(
        bytes: &mut &[u8],
        hashers: &mut StorageHashersIter,
        types: &PortableRegistry,
    ) -> Result<Self, Error>
    where
        Self: Sized + 'static,
    {
        let mut result: Vec<scale_value::Value> = vec![];
        for (hasher, ty_id) in hashers.by_ref() {
            match consume_hash_returning_key_bytes(bytes, hasher, ty_id, types)? {
                Some(value_bytes) => {
                    let value =
                        scale_value::scale::decode_as_type(&mut &*value_bytes, ty_id, types)?;
                    result.push(value.remove_context());
                }
                None => {
                    result.push(Value::unnamed_composite([]));
                }
            }
        }

        // We've consumed all of the hashers, so we expect to also consume all of the bytes:
        if !bytes.is_empty() {
            return Err(StorageAddressError::TooManyBytes.into());
        }

        Ok(result)
    }
}

// Skip over the hash bytes (including any key at the end), returning bytes
// representing the key if one exists, or None if the hasher has no key appended.
fn consume_hash_returning_key_bytes<'a>(
    bytes: &mut &'a [u8],
    hasher: StorageHasher,
    ty_id: u32,
    types: &PortableRegistry,
) -> Result<Option<&'a [u8]>, Error> {
    // Strip the bytes off for the actual hash, consuming them.
    let bytes_to_strip = hasher.len_excluding_key();
    if bytes.len() < bytes_to_strip {
        return Err(StorageAddressError::NotEnoughBytes.into());
    }
    *bytes = &bytes[bytes_to_strip..];

    // Now, find the bytes representing the key, consuming them.
    let before_key = *bytes;
    if hasher.ends_with_key() {
        scale_decode::visitor::decode_with_visitor(
            bytes,
            ty_id,
            types,
            IgnoreVisitor::<PortableRegistry>::new(),
        )
        .map_err(|err| Error::Decode(err.into()))?;
        // Return the key bytes, having advanced the input cursor past them.
        let key_bytes = &before_key[..before_key.len() - bytes.len()];

        Ok(Some(key_bytes))
    } else {
        // There are no key bytes, so return None.
        Ok(None)
    }
}

/// Generates StorageKey implementations for tuples
macro_rules! impl_tuples {
    ($($ty:ident $n:tt),+) => {{
        impl<$($ty: StorageKey),+> StorageKey for ($( $ty ),+) {
            fn encode_storage_key(
                &self,
                bytes: &mut Vec<u8>,
                hashers: &mut StorageHashersIter,
                types: &PortableRegistry,
            ) -> Result<(), Error> {
                $(    self.$n.encode_storage_key(bytes, hashers, types)?;    )+
                Ok(())
            }

            fn decode_storage_key(
                bytes: &mut &[u8],
                hashers: &mut StorageHashersIter,
                types: &PortableRegistry,
            ) -> Result<Self, Error>
            where
                Self: Sized + 'static,
            {
                Ok( ( $(    $ty::decode_storage_key(bytes, hashers, types)?,    )+ ) )
            }
        }
    }};
}

#[rustfmt::skip]
const _: () = {
    impl_tuples!(A 0, B 1);
    impl_tuples!(A 0, B 1, C 2);
    impl_tuples!(A 0, B 1, C 2, D 3);
    impl_tuples!(A 0, B 1, C 2, D 3, E 4);
    impl_tuples!(A 0, B 1, C 2, D 3, E 4, F 5);
    impl_tuples!(A 0, B 1, C 2, D 3, E 4, F 5, G 6);
    impl_tuples!(A 0, B 1, C 2, D 3, E 4, F 5, G 6, H 7);
};

#[cfg(test)]
mod tests {

    use codec::Encode;
    use scale_info::{meta_type, PortableRegistry, Registry, TypeInfo};
    use subxt_metadata::StorageHasher;

    use crate::utils::Era;

    use alloc::string::String;
    use alloc::vec;
    use alloc::vec::Vec;

    use super::{StaticStorageKey, StorageKey};

    struct KeyBuilder {
        registry: Registry,
        bytes: Vec<u8>,
        hashers_and_ty_ids: Vec<(StorageHasher, u32)>,
    }

    impl KeyBuilder {
        fn new() -> KeyBuilder {
            KeyBuilder {
                registry: Registry::new(),
                bytes: vec![],
                hashers_and_ty_ids: vec![],
            }
        }

        fn add<T: TypeInfo + Encode + 'static>(mut self, value: T, hasher: StorageHasher) -> Self {
            let id = self.registry.register_type(&meta_type::<T>()).id;

            self.hashers_and_ty_ids.push((hasher, id));
            for _i in 0..hasher.len_excluding_key() {
                self.bytes.push(0);
            }
            value.encode_to(&mut self.bytes);
            self
        }

        fn build(self) -> (PortableRegistry, Vec<u8>, Vec<(StorageHasher, u32)>) {
            (self.registry.into(), self.bytes, self.hashers_and_ty_ids)
        }
    }

    #[test]
    fn storage_key_decoding_fuzz() {
        let hashers = [
            StorageHasher::Blake2_128,
            StorageHasher::Blake2_128Concat,
            StorageHasher::Blake2_256,
            StorageHasher::Identity,
            StorageHasher::Twox128,
            StorageHasher::Twox256,
            StorageHasher::Twox64Concat,
        ];

        let key_preserving_hashers = [
            StorageHasher::Blake2_128Concat,
            StorageHasher::Identity,
            StorageHasher::Twox64Concat,
        ];

        type T4A = (
            (),
            StaticStorageKey<u32>,
            StaticStorageKey<String>,
            StaticStorageKey<Era>,
        );
        type T4B = (
            (),
            (StaticStorageKey<u32>, StaticStorageKey<String>),
            StaticStorageKey<Era>,
        );
        type T4C = (
            ((), StaticStorageKey<u32>),
            (StaticStorageKey<String>, StaticStorageKey<Era>),
        );

        let era = Era::Immortal;
        for h0 in hashers {
            for h1 in key_preserving_hashers {
                for h2 in key_preserving_hashers {
                    for h3 in key_preserving_hashers {
                        let (types, bytes, hashers_and_ty_ids) = KeyBuilder::new()
                            .add((), h0)
                            .add(13u32, h1)
                            .add("Hello", h2)
                            .add(era, h3)
                            .build();

                        let hashers = super::StorageHashers { hashers_and_ty_ids };
                        let keys_a =
                            T4A::decode_storage_key(&mut &bytes[..], &mut hashers.iter(), &types)
                                .unwrap();

                        let keys_b =
                            T4B::decode_storage_key(&mut &bytes[..], &mut hashers.iter(), &types)
                                .unwrap();

                        let keys_c =
                            T4C::decode_storage_key(&mut &bytes[..], &mut hashers.iter(), &types)
                                .unwrap();

                        assert_eq!(keys_a.1.decoded().unwrap(), 13);
                        assert_eq!(keys_b.1 .0.decoded().unwrap(), 13);
                        assert_eq!(keys_c.0 .1.decoded().unwrap(), 13);

                        assert_eq!(keys_a.2.decoded().unwrap(), "Hello");
                        assert_eq!(keys_b.1 .1.decoded().unwrap(), "Hello");
                        assert_eq!(keys_c.1 .0.decoded().unwrap(), "Hello");
                        assert_eq!(keys_a.3.decoded().unwrap(), era);
                        assert_eq!(keys_b.2.decoded().unwrap(), era);
                        assert_eq!(keys_c.1 .1.decoded().unwrap(), era);
                    }
                }
            }
        }
    }
}