1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
// Copyright 2019-2023 Parity Technologies (UK) Ltd.
// This file is dual-licensed as Apache-2.0 or GPL-3.0.
// see LICENSE for license details.
mod composite_def;
mod derives;
mod substitutes;
#[cfg(test)]
mod tests;
mod type_def;
mod type_def_params;
mod type_path;
use proc_macro2::{Ident, Span, TokenStream};
use quote::{quote, ToTokens};
use scale_info::{form::PortableForm, PortableRegistry, Type, TypeDef};
use std::collections::BTreeMap;
use crate::error::CodegenError;
pub use self::{
    composite_def::{CompositeDef, CompositeDefFieldType, CompositeDefFields},
    derives::{Derives, DerivesRegistry},
    substitutes::{AbsolutePath, TypeSubstitutes},
    type_def::TypeDefGen,
    type_def_params::TypeDefParameters,
    type_path::{TypeParameter, TypePath, TypePathType},
};
pub type Field = scale_info::Field<PortableForm>;
/// Generate a Rust module containing all types defined in the supplied [`PortableRegistry`].
#[derive(Debug)]
pub struct TypeGenerator<'a> {
    /// The name of the module which will contain the generated types.
    types_mod_ident: Ident,
    /// Registry of type definitions to be transformed into Rust type definitions.
    type_registry: &'a PortableRegistry,
    /// User defined overrides for generated types.
    type_substitutes: TypeSubstitutes,
    /// Set of derives with which to annotate generated types.
    derives: DerivesRegistry,
    /// The `subxt` crate access path in the generated code.
    crate_path: CratePath,
    /// True if codegen should generate the documentation for the API.
    should_gen_docs: bool,
}
impl<'a> TypeGenerator<'a> {
    /// Construct a new [`TypeGenerator`].
    pub fn new(
        type_registry: &'a PortableRegistry,
        root_mod: &'static str,
        type_substitutes: TypeSubstitutes,
        derives: DerivesRegistry,
        crate_path: CratePath,
        should_gen_docs: bool,
    ) -> Self {
        let root_mod_ident = Ident::new(root_mod, Span::call_site());
        Self {
            types_mod_ident: root_mod_ident,
            type_registry,
            type_substitutes,
            derives,
            crate_path,
            should_gen_docs,
        }
    }
    /// Generate a module containing all types defined in the supplied type registry.
    pub fn generate_types_mod(&self) -> Result<Module, CodegenError> {
        let root_mod_ident = &self.types_mod_ident;
        let mut root_mod = Module::new(root_mod_ident.clone(), root_mod_ident.clone());
        for ty in &self.type_registry.types {
            let path = &ty.ty.path;
            // Don't generate a type if it was substituted - the target type might
            // not be in the type registry + our resolution already performs the substitution.
            if self.type_substitutes.contains(path) {
                continue;
            }
            let namespace = path.namespace();
            // prelude types e.g. Option/Result have no namespace, so we don't generate them
            if namespace.is_empty() {
                continue;
            }
            // Lazily create submodules for the encountered namespace path, if they don't exist
            let innermost_module = namespace
                .iter()
                .map(|segment| Ident::new(segment, Span::call_site()))
                .fold(&mut root_mod, |module, ident| {
                    module
                        .children
                        .entry(ident.clone())
                        .or_insert_with(|| Module::new(ident, root_mod_ident.clone()))
                });
            innermost_module.types.insert(
                path.clone(),
                TypeDefGen::from_type(&ty.ty, self, &self.crate_path, self.should_gen_docs)?,
            );
        }
        Ok(root_mod)
    }
    /// # Panics
    ///
    /// If no type with the given id found in the type registry.
    pub fn resolve_type(&self, id: u32) -> Type<PortableForm> {
        self.type_registry
            .resolve(id)
            .unwrap_or_else(|| panic!("No type with id {id} found"))
            .clone()
    }
    /// Get the type path for a field of a struct or an enum variant, providing any generic
    /// type parameters from the containing type. This is for identifying where a generic type
    /// parameter is used in a field type e.g.
    ///
    /// ```rust
    /// struct S<T> {
    ///     a: T, // `T` is the "parent" type param from the containing type.
    ///     b: Vec<Option<T>>, // nested use of generic type param `T`.
    /// }
    /// ```
    ///
    /// This allows generating the correct generic field type paths.
    ///
    /// # Panics
    ///
    /// If no type with the given id found in the type registry.
    pub fn resolve_field_type_path(
        &self,
        id: u32,
        parent_type_params: &[TypeParameter],
        original_name: Option<&str>,
    ) -> TypePath {
        self.resolve_type_path_recurse(id, true, parent_type_params, original_name)
    }
    /// Get the type path for the given type identifier.
    ///
    /// # Panics
    ///
    /// If no type with the given id found in the type registry.
    pub fn resolve_type_path(&self, id: u32) -> TypePath {
        self.resolve_type_path_recurse(id, false, &[], None)
    }
    /// Visit each node in a possibly nested type definition to produce a type path.
    ///
    /// e.g `Result<GenericStruct<NestedGenericStruct<T>>, String>`
    ///
    /// if `original_name` is `Some(original_name)`, the resolved type needs to have the same `original_name`.
    fn resolve_type_path_recurse(
        &self,
        id: u32,
        is_field: bool,
        parent_type_params: &[TypeParameter],
        original_name: Option<&str>,
    ) -> TypePath {
        if let Some(parent_type_param) = parent_type_params.iter().find(|tp| {
            tp.concrete_type_id == id
                && original_name.map_or(true, |original_name| tp.original_name == original_name)
        }) {
            return TypePath::from_parameter(parent_type_param.clone());
        }
        let mut ty = self.resolve_type(id);
        if ty.path.ident() == Some("Cow".to_string()) {
            ty = self.resolve_type(
                ty.type_params[0]
                    .ty
                    .expect("type parameters to Cow are not expected to be skipped; qed")
                    .id,
            )
        }
        let params: Vec<_> = ty
            .type_params
            .iter()
            .filter_map(|f| {
                f.ty.map(|f| self.resolve_type_path_recurse(f.id, false, parent_type_params, None))
            })
            .collect();
        let ty = match &ty.type_def {
            TypeDef::Composite(_) | TypeDef::Variant(_) => {
                if let Some(ty) = self
                    .type_substitutes
                    .for_path_with_params(&ty.path, ¶ms)
                {
                    ty
                } else {
                    TypePathType::from_type_def_path(&ty.path, self.types_mod_ident.clone(), params)
                }
            }
            TypeDef::Primitive(primitive) => TypePathType::Primitive {
                def: primitive.clone(),
            },
            TypeDef::Array(arr) => TypePathType::Array {
                len: arr.len as usize,
                of: Box::new(self.resolve_type_path_recurse(
                    arr.type_param.id,
                    false,
                    parent_type_params,
                    None,
                )),
            },
            TypeDef::Sequence(seq) => TypePathType::Vec {
                of: Box::new(self.resolve_type_path_recurse(
                    seq.type_param.id,
                    false,
                    parent_type_params,
                    None,
                )),
            },
            TypeDef::Tuple(tuple) => TypePathType::Tuple {
                elements: tuple
                    .fields
                    .iter()
                    .map(|f| self.resolve_type_path_recurse(f.id, false, parent_type_params, None))
                    .collect(),
            },
            TypeDef::Compact(compact) => TypePathType::Compact {
                inner: Box::new(self.resolve_type_path_recurse(
                    compact.type_param.id,
                    false,
                    parent_type_params,
                    None,
                )),
                is_field,
                crate_path: self.crate_path.clone(),
            },
            TypeDef::BitSequence(bitseq) => TypePathType::BitVec {
                bit_order_type: Box::new(self.resolve_type_path_recurse(
                    bitseq.bit_order_type.id,
                    false,
                    parent_type_params,
                    None,
                )),
                bit_store_type: Box::new(self.resolve_type_path_recurse(
                    bitseq.bit_store_type.id,
                    false,
                    parent_type_params,
                    None,
                )),
                crate_path: self.crate_path.clone(),
            },
        };
        TypePath::from_type(ty)
    }
    /// Returns the derives to be applied to all generated types.
    pub fn default_derives(&self) -> &Derives {
        self.derives.default_derives()
    }
    /// Returns the type registry.
    pub fn types(&self) -> &PortableRegistry {
        self.type_registry
    }
    /// Returns the derives to be applied to a generated type.
    pub fn type_derives(&self, ty: &Type<PortableForm>) -> Result<Derives, CodegenError> {
        let joined_path = ty.path.segments.join("::");
        let ty_path: syn::TypePath = syn::parse_str(&joined_path)
            .map_err(|e| CodegenError::InvalidTypePath(joined_path, e))?;
        Ok(self.derives.resolve(&ty_path))
    }
}
/// Represents a Rust `mod`, containing generated types and child `mod`s.
#[derive(Debug)]
pub struct Module {
    name: Ident,
    root_mod: Ident,
    children: BTreeMap<Ident, Module>,
    types: BTreeMap<scale_info::Path<PortableForm>, TypeDefGen>,
}
impl ToTokens for Module {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        let name = &self.name;
        let root_mod = &self.root_mod;
        let modules = self.children.values();
        let types = self.types.values().clone();
        tokens.extend(quote! {
            pub mod #name {
                use super::#root_mod;
                #( #modules )*
                #( #types )*
            }
        })
    }
}
impl Module {
    /// Create a new [`Module`], with a reference to the root `mod` for resolving type paths.
    pub(crate) fn new(name: Ident, root_mod: Ident) -> Self {
        Self {
            name,
            root_mod,
            children: BTreeMap::new(),
            types: BTreeMap::new(),
        }
    }
    /// Returns the module ident.
    pub fn ident(&self) -> &Ident {
        &self.name
    }
    /// Returns this `Module`s child `mod`s.
    pub fn children(&self) -> impl Iterator<Item = (&Ident, &Module)> {
        self.children.iter()
    }
    /// Returns the generated types.
    pub fn types(&self) -> impl Iterator<Item = (&scale_info::Path<PortableForm>, &TypeDefGen)> {
        self.types.iter()
    }
    /// Returns the root `mod` used for resolving type paths.
    pub fn root_mod(&self) -> &Ident {
        &self.root_mod
    }
}
/// A newtype wrapper which stores the path to the Subxt crate.
#[derive(Debug, Clone)]
pub struct CratePath(syn::Path);
impl CratePath {
    /// Create a new `CratePath` from a `syn::Path`.
    pub fn new(path: syn::Path) -> Self {
        Self(path)
    }
}
impl Default for CratePath {
    fn default() -> Self {
        Self(syn::parse_quote!(::subxt))
    }
}
impl From<syn::Path> for CratePath {
    fn from(path: syn::Path) -> Self {
        CratePath::new(path)
    }
}
impl ToTokens for CratePath {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        self.0.to_tokens(tokens)
    }
}
impl From<&str> for CratePath {
    fn from(crate_path: &str) -> Self {
        Self(syn::parse_str(crate_path).unwrap_or_else(|err| {
            panic!("failed converting {crate_path:?} to `syn::Path`: {err:?}");
        }))
    }
}
impl From<String> for CratePath {
    fn from(crate_path: String) -> Self {
        CratePath::from(crate_path.as_str())
    }
}
impl From<Option<String>> for CratePath {
    fn from(maybe_crate_path: Option<String>) -> Self {
        match maybe_crate_path {
            None => CratePath::default(),
            Some(crate_path) => crate_path.into(),
        }
    }
}