1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
//! # subtr-actor
//!
//! [`subtr-actor`](crate) is a versatile library designed to facilitate the
//! processes of working with and extracting data from Rocket League replays.
//! Utilizing the powerful [`boxcars`] library for parsing, subtr-actor
//! simplifies (or 'subtracts', as hinted by its name) the underlying
//! actor-based structure of replay files, making them more accessible and
//! easier to manipulate.
//!
//! ## Overview of Key Components
//!
//! - **[`ReplayProcessor`]**: This struct is at the heart of subtr-actor's
//! replay processing capabilities. In its main entry point,
//! [`ReplayProcessor::process`], it pushes network frames from the
//! [`boxcars::Replay`] that it is initialized with though an
//! [`ActorStateModeler`] instance, calling the [`Collector`] instance that is
//! provided as an argument as it does so. The [`Collector`] is provided with a
//! reference to the [`ReplayProcessor`] each time the it is invoked, which
//! allows it to use the suite of helper methods which greatly assist in the
//! navigation of the actor graph and the retrieval of information about the
//! current game state.
//!
//! - **[`Collector`]**: This trait outlines the blueprint for data collection
//! from replays. The [`Collector`] interfaces with a [`ReplayProcessor`],
//! handling frame data and guiding the pace of replay progression with
//! [`TimeAdvance`]. It is typically invoked repeatedly through the
//! [`ReplayProcessor::process`] method as the replay is processed frame by
//! frame.
//!
//! - **[`FrameRateDecorator`]**: This struct decorates a [`Collector`]
//! implementation with a target frame duration, controlling the frame rate of
//! the replay processing.
//!
//! ### Collector implementations
//!
//! [`subtr-actor`](crate) also includes implementations of the [`Collector`] trait:
//!
//! - **[`NDArrayCollector`]**: This [`Collector`] implementations translates
//! frame-based replay data into a 2 dimensional array in the form of a
//! [`::ndarray::Array2`] instance. The exact data that is recorded in each
//! frame can be configured with the [`FeatureAdder`] and [`PlayerFeatureAdder`]
//! instances that are provided to its constructor ([`NDArrayCollector::new`]).
//! Extending the exact behavior of [`NDArrayCollector`] is thus possible with
//! user defined [`FeatureAdder`] and [`PlayerFeatureAdder`], which is made easy
//! with the [`build_global_feature_adder!`] and [`build_player_feature_adder!`]
//! macros. The [`::ndarray::Array2`] produced by [`NDArrayCollector`] is ideal
//! for use with machine learning libraries like pytorch and tensorflow.
//!
//! - **[`ReplayDataCollector`]**: This [`Collector`] implementation provides an easy way
//! to get a serializable to e.g. json (though [`serde::Serialize`])
//! representation of the replay. The representation differs from what you might
//! get from e.g. raw [`boxcars`] in that it is not a complicated graph of actor
//! objects, but instead something more natural where the data associated with
//! each entity in the game is grouped together.
//!
//! ## Examples
//!
//! ### Getting JSON
//!
//! ```
//! fn get_json(filepath: std::path::PathBuf) -> anyhow::Result<String> {
//! let data = std::fs::read(filepath.as_path())?;
//! let replay = boxcars::ParserBuilder::new(&data)
//! .must_parse_network_data()
//! .on_error_check_crc()
//! .parse()?;
//! Ok(subtr_actor::ReplayDataCollector::new()
//! .get_replay_data(&replay)
//! .map_err(|e| e.variant)?
//! .as_json()?)
//! }
//! ```
//!
//! ### Getting a [`::ndarray::Array2`]
//!
//! In the following example, we demonstrate how to use [`boxcars`],
//! [`NDArrayCollector`] and [`FrameRateDecorator`] to write a function that
//! takes a replay filepath and collections of features adders and returns a
//! [`ReplayMetaWithHeaders`] along with a [`::ndarray::Array2`] . The resulting
//! [`::ndarray::Array2`] would be appropriate for use in a machine learning
//! context. Note that [`ReplayProcessor`] is also used implicitly here in the
//! [`Collector::process_replay`]
//!
//! ```
//! use subtr_actor::*;
//!
//! fn get_ndarray_with_info_from_replay_filepath(
//! filepath: std::path::PathBuf,
//! feature_adders: FeatureAdders<f32>,
//! player_feature_adders: PlayerFeatureAdders<f32>,
//! fps: Option<f32>,
//! ) -> anyhow::Result<(ReplayMetaWithHeaders, ::ndarray::Array2<f32>)> {
//! let data = std::fs::read(filepath.as_path())?;
//! let replay = boxcars::ParserBuilder::new(&data)
//! .must_parse_network_data()
//! .on_error_check_crc()
//! .parse()?;
//!
//! let mut collector = NDArrayCollector::new(feature_adders, player_feature_adders);
//!
//! FrameRateDecorator::new_from_fps(fps.unwrap_or(10.0), &mut collector)
//! .process_replay(&replay)
//! .map_err(|e| e.variant)?;
//!
//! Ok(collector.get_meta_and_ndarray().map_err(|e| e.variant)?)
//! }
//!
//! fn get_ndarray_with_default_feature_adders(
//! filepath: std::path::PathBuf,
//! ) -> anyhow::Result<(ReplayMetaWithHeaders, ::ndarray::Array2<f32>)> {
//! get_ndarray_with_info_from_replay_filepath(
//! filepath,
//! vec![
//! InterpolatedBallRigidBodyNoVelocities::arc_new(0.003),
//! CurrentTime::arc_new(),
//! ],
//! vec![
//! InterpolatedPlayerRigidBodyNoVelocities::arc_new(0.003),
//! PlayerBoost::arc_new(),
//! PlayerAnyJump::arc_new(),
//! PlayerDemolishedBy::arc_new(),
//! ],
//! Some(30.0),
//! )
//! }
//! ```
//!
//! ### Using [`NDArrayCollector::from_strings`]
//!
//! In the second function we see the use of feature adders like
//! [`InterpolatedPlayerRigidBodyNoVelocities`]. The feature adders that are
//! included with [`subtr_actor`](crate) can all be found in the
//! [`crate::collector::ndarray`] module. It is also possible to access these
//! feature adders by name with strings, which can be useful when implementing
//! bindings for other languages since those languages may not be able to access
//! rust structs an instantiate them easily or at all.
//!
//! ```
//! pub static DEFAULT_GLOBAL_FEATURE_ADDERS: [&str; 1] = ["BallRigidBody"];
//!
//! pub static DEFAULT_PLAYER_FEATURE_ADDERS: [&str; 3] =
//! ["PlayerRigidBody", "PlayerBoost", "PlayerAnyJump"];
//!
//! fn build_ndarray_collector(
//! global_feature_adders: Option<Vec<String>>,
//! player_feature_adders: Option<Vec<String>>,
//! ) -> subtr_actor::SubtrActorResult<subtr_actor::NDArrayCollector<f32>> {
//! let global_feature_adders = global_feature_adders.unwrap_or_else(|| {
//! DEFAULT_GLOBAL_FEATURE_ADDERS
//! .iter()
//! .map(|i| i.to_string())
//! .collect()
//! });
//! let player_feature_adders = player_feature_adders.unwrap_or_else(|| {
//! DEFAULT_PLAYER_FEATURE_ADDERS
//! .iter()
//! .map(|i| i.to_string())
//! .collect()
//! });
//! let global_feature_adders: Vec<&str> = global_feature_adders.iter().map(|s| &s[..]).collect();
//! let player_feature_adders: Vec<&str> = player_feature_adders.iter().map(|s| &s[..]).collect();
//! subtr_actor::NDArrayCollector::<f32>::from_strings(
//! &global_feature_adders,
//! &player_feature_adders,
//! )
//! }
//! ```
pub mod actor_state;
pub mod collector;
pub mod constants;
pub mod error;
pub mod processor;
pub mod util;
#[cfg(test)]
mod util_test;
pub use crate::actor_state::*;
pub use crate::collector::*;
pub use crate::constants::*;
pub use crate::error::*;
pub use crate::processor::*;
pub use crate::util::*;
#[macro_use]
extern crate derive_new;