subtle_ml/
lib.rs

1// -*- mode: rust; -*-
2//
3// This file is part of subtle, part of the dalek cryptography project.
4// Copyright (c) 2016-2018 isis lovecruft, Henry de Valence
5// See LICENSE for licensing information.
6//
7// Authors:
8// - isis agora lovecruft <isis@patternsinthevoid.net>
9// - Henry de Valence <hdevalence@hdevalence.ca>
10
11#![no_std]
12#![deny(missing_docs)]
13#![doc(html_logo_url = "https://doc.dalek.rs/assets/dalek-logo-clear.png")]
14#![doc(html_root_url = "https://docs.rs/subtle/2.4.1")]
15
16//! # subtle [![](https://img.shields.io/crates/v/subtle.svg)](https://crates.io/crates/subtle) [![](https://img.shields.io/badge/dynamic/json.svg?label=docs&uri=https%3A%2F%2Fcrates.io%2Fapi%2Fv1%2Fcrates%2Fsubtle%2Fversions&query=%24.versions%5B0%5D.num&colorB=4F74A6)](https://doc.dalek.rs/subtle) [![](https://travis-ci.org/dalek-cryptography/subtle.svg?branch=master)](https://travis-ci.org/dalek-cryptography/subtle)
17//!
18//! **Pure-Rust traits and utilities for constant-time cryptographic implementations.**
19//!
20//! It consists of a `Choice` type, and a collection of traits using `Choice`
21//! instead of `bool` which are intended to execute in constant-time.  The `Choice`
22//! type is a wrapper around a `u8` that holds a `0` or `1`.
23//!
24//! ```toml
25//! subtle = "2.4"
26//! ```
27//!
28//! This crate represents a “best-effort” attempt, since side-channels
29//! are ultimately a property of a deployed cryptographic system
30//! including the hardware it runs on, not just of software.
31//!
32//! The traits are implemented using bitwise operations, and should execute in
33//! constant time provided that a) the bitwise operations are constant-time and
34//! b) the bitwise operations are not recognized as a conditional assignment and
35//! optimized back into a branch.
36//!
37//! For a compiler to recognize that bitwise operations represent a conditional
38//! assignment, it needs to know that the value used to generate the bitmasks is
39//! really a boolean `i1` rather than an `i8` byte value. In an attempt to
40//! prevent this refinement, the crate tries to hide the value of a `Choice`'s
41//! inner `u8` by passing it through a volatile read. For more information, see
42//! the _About_ section below.
43//!
44//! Versions prior to `2.2` recommended use of the `nightly` feature to enable an
45//! optimization barrier; this is not required in versions `2.2` and above.
46//!
47//! Note: the `subtle` crate contains `debug_assert`s to check invariants during
48//! debug builds. These invariant checks involve secret-dependent branches, and
49//! are not present when compiled in release mode. This crate is intended to be
50//! used in release mode.
51//!
52//! ## Documentation
53//!
54//! Documentation is available [here][docs].
55//!
56//! ## Minimum Supported Rust Version
57//!
58//! Rust **1.41** or higher.
59//!
60//! Minimum supported Rust version can be changed in the future, but it will be done with a minor version bump.
61//!
62//! ## About
63//!
64//! This library aims to be the Rust equivalent of Go’s `crypto/subtle` module.
65//!
66//! The optimization barrier in `impl From<u8> for Choice` was based on Tim
67//! Maclean's [work on `rust-timing-shield`][rust-timing-shield], which attempts to
68//! provide a more comprehensive approach for preventing software side-channels in
69//! Rust code.
70//!
71//! `subtle` is authored by isis agora lovecruft and Henry de Valence.
72//!
73//! ## Warning
74//!
75//! This code is a low-level library, intended for specific use-cases implementing
76//! cryptographic protocols.  It represents a best-effort attempt to protect
77//! against some software side-channels.  Because side-channel resistance is not a
78//! property of software alone, but of software together with hardware, any such
79//! effort is fundamentally limited.
80//!
81//! **USE AT YOUR OWN RISK**
82//!
83//! [docs]: https://docs.rs/subtle
84//! [rust-timing-shield]: https://www.chosenplaintext.ca/open-source/rust-timing-shield/security
85
86#[cfg(feature = "std")]
87#[macro_use]
88extern crate std;
89
90use core::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Neg, Not};
91use core::option::Option;
92
93/// The `Choice` struct represents a choice for use in conditional assignment.
94///
95/// It is a wrapper around a `u8`, which should have the value either `1` (true)
96/// or `0` (false).
97///
98/// The conversion from `u8` to `Choice` passes the value through an optimization
99/// barrier, as a best-effort attempt to prevent the compiler from inferring that
100/// the `Choice` value is a boolean. This strategy is based on Tim Maclean's
101/// [work on `rust-timing-shield`][rust-timing-shield], which attempts to provide
102/// a more comprehensive approach for preventing software side-channels in Rust
103/// code.
104///
105/// The `Choice` struct implements operators for AND, OR, XOR, and NOT, to allow
106/// combining `Choice` values. These operations do not short-circuit.
107///
108/// [rust-timing-shield]:
109/// https://www.chosenplaintext.ca/open-source/rust-timing-shield/security
110#[derive(Copy, Clone, Debug)]
111pub struct Choice(u8);
112
113impl Choice {
114    /// Unwrap the `Choice` wrapper to reveal the underlying `u8`.
115    ///
116    /// # Note
117    ///
118    /// This function only exists as an **escape hatch** for the rare case
119    /// where it's not possible to use one of the `subtle`-provided
120    /// trait impls.
121    ///
122    /// **To convert a `Choice` to a `bool`, use the `From` implementation instead.**
123    #[inline]
124    pub fn unwrap_u8(&self) -> u8 {
125        self.0
126    }
127}
128
129
130impl From<Choice> for bool {
131    /// Convert the `Choice` wrapper into a `bool`, depending on whether
132    /// the underlying `u8` was a `0` or a `1`.
133    ///
134    /// # Note
135    ///
136    /// This function exists to avoid having higher-level cryptographic protocol
137    /// implementations duplicating this pattern.
138    ///
139    /// The intended use case for this conversion is at the _end_ of a
140    /// higher-level primitive implementation: for example, in checking a keyed
141    /// MAC, where the verification should happen in constant-time (and thus use
142    /// a `Choice`) but it is safe to return a `bool` at the end of the
143    /// verification.
144    #[inline]
145    fn from(source: Choice) -> bool {
146        debug_assert!((source.0 == 0u8) | (source.0 == 1u8));
147        source.0 != 0
148    }
149}
150
151impl BitAnd for Choice {
152    type Output = Choice;
153    #[inline]
154    fn bitand(self, rhs: Choice) -> Choice {
155        (self.0 & rhs.0).into()
156    }
157}
158
159impl BitAndAssign for Choice {
160    #[inline]
161    fn bitand_assign(&mut self, rhs: Choice) {
162        *self = *self & rhs;
163    }
164}
165
166impl BitOr for Choice {
167    type Output = Choice;
168    #[inline]
169    fn bitor(self, rhs: Choice) -> Choice {
170        (self.0 | rhs.0).into()
171    }
172}
173
174impl BitOrAssign for Choice {
175    #[inline]
176    fn bitor_assign(&mut self, rhs: Choice) {
177        *self = *self | rhs;
178    }
179}
180
181impl BitXor for Choice {
182    type Output = Choice;
183    #[inline]
184    fn bitxor(self, rhs: Choice) -> Choice {
185        (self.0 ^ rhs.0).into()
186    }
187}
188
189impl BitXorAssign for Choice {
190    #[inline]
191    fn bitxor_assign(&mut self, rhs: Choice) {
192        *self = *self ^ rhs;
193    }
194}
195
196impl Not for Choice {
197    type Output = Choice;
198    #[inline]
199    fn not(self) -> Choice {
200        (1u8 & (!self.0)).into()
201    }
202}
203
204/// This function is a best-effort attempt to prevent the compiler from knowing
205/// anything about the value of the returned `u8`, other than its type.
206///
207/// Because we want to support stable Rust, we don't have access to inline
208/// assembly or test::black_box, so we use the fact that volatile values will
209/// never be elided to register values.
210///
211/// Note: Rust's notion of "volatile" is subject to change over time. While this
212/// code may break in a non-destructive way in the future, “constant-time” code
213/// is a continually moving target, and this is better than doing nothing.
214#[inline(never)]
215fn black_box(input: u8) -> u8 {
216    debug_assert!((input == 0u8) | (input == 1u8));
217
218    unsafe {
219        // Optimization barrier
220        //
221        // Unsafe is ok, because:
222        //   - &input is not NULL;
223        //   - size of input is not zero;
224        //   - u8 is neither Sync, nor Send;
225        //   - u8 is Copy, so input is always live;
226        //   - u8 type is always properly aligned.
227        core::ptr::read_volatile(&input as *const u8)
228    }
229}
230
231impl From<u8> for Choice {
232    #[inline]
233    fn from(input: u8) -> Choice {
234        // Our goal is to prevent the compiler from inferring that the value held inside the
235        // resulting `Choice` struct is really an `i1` instead of an `i8`.
236        Choice(black_box(input))
237    }
238}
239
240impl Choice {
241    /// Intended to use in const init situations
242    pub const fn from_u8_unchecked(input: u8) -> Choice {
243        Choice(input)
244    }
245}
246
247/// An `Eq`-like trait that produces a `Choice` instead of a `bool`.
248///
249/// # Example
250///
251/// ```
252/// use subtle::ConstantTimeEq;
253/// let x: u8 = 5;
254/// let y: u8 = 13;
255///
256/// assert_eq!(x.ct_eq(&y).unwrap_u8(), 0);
257/// assert_eq!(x.ct_eq(&x).unwrap_u8(), 1);
258/// ```
259pub trait ConstantTimeEq {
260    /// Determine if two items are equal.
261    ///
262    /// The `ct_eq` function should execute in constant time.
263    ///
264    /// # Returns
265    ///
266    /// * `Choice(1u8)` if `self == other`;
267    /// * `Choice(0u8)` if `self != other`.
268    fn ct_eq(&self, other: &Self) -> Choice;
269}
270
271impl<T: ConstantTimeEq> ConstantTimeEq for [T] {
272    /// Check whether two slices of `ConstantTimeEq` types are equal.
273    ///
274    /// # Note
275    ///
276    /// This function short-circuits if the lengths of the input slices
277    /// are different.  Otherwise, it should execute in time independent
278    /// of the slice contents.
279    ///
280    /// Since arrays coerce to slices, this function works with fixed-size arrays:
281    ///
282    /// ```
283    /// # use subtle::ConstantTimeEq;
284    /// #
285    /// let a: [u8; 8] = [0,1,2,3,4,5,6,7];
286    /// let b: [u8; 8] = [0,1,2,3,0,1,2,3];
287    ///
288    /// let a_eq_a = a.ct_eq(&a);
289    /// let a_eq_b = a.ct_eq(&b);
290    ///
291    /// assert_eq!(a_eq_a.unwrap_u8(), 1);
292    /// assert_eq!(a_eq_b.unwrap_u8(), 0);
293    /// ```
294    #[inline]
295    fn ct_eq(&self, _rhs: &[T]) -> Choice {
296        let len = self.len();
297
298        // Short-circuit on the *lengths* of the slices, not their
299        // contents.
300        if len != _rhs.len() {
301            return Choice::from(0);
302        }
303
304        // This loop shouldn't be shortcircuitable, since the compiler
305        // shouldn't be able to reason about the value of the `u8`
306        // unwrapped from the `ct_eq` result.
307        let mut x = 1u8;
308        for (ai, bi) in self.iter().zip(_rhs.iter()) {
309            x &= ai.ct_eq(bi).unwrap_u8();
310        }
311
312        x.into()
313    }
314}
315
316impl ConstantTimeEq for Choice {
317    #[inline]
318    fn ct_eq(&self, rhs: &Choice) -> Choice {
319        !(*self ^ *rhs)
320    }
321}
322
323/// Given the bit-width `$bit_width` and the corresponding primitive
324/// unsigned and signed types `$t_u` and `$t_i` respectively, generate
325/// an `ConstantTimeEq` implementation.
326macro_rules! generate_integer_equal {
327    ($t_u:ty, $t_i:ty, $bit_width:expr) => {
328        impl ConstantTimeEq for $t_u {
329            #[inline]
330            fn ct_eq(&self, other: &$t_u) -> Choice {
331                // x == 0 if and only if self == other
332                let x: $t_u = self ^ other;
333
334                // If x == 0, then x and -x are both equal to zero;
335                // otherwise, one or both will have its high bit set.
336                let y: $t_u = (x | x.wrapping_neg()) >> ($bit_width - 1);
337
338                // Result is the opposite of the high bit (now shifted to low).
339                ((y ^ (1 as $t_u)) as u8).into()
340            }
341        }
342        impl ConstantTimeEq for $t_i {
343            #[inline]
344            fn ct_eq(&self, other: &$t_i) -> Choice {
345                // Bitcast to unsigned and call that implementation.
346                (*self as $t_u).ct_eq(&(*other as $t_u))
347            }
348        }
349    };
350}
351
352generate_integer_equal!(u8, i8, 8);
353generate_integer_equal!(u16, i16, 16);
354generate_integer_equal!(u32, i32, 32);
355generate_integer_equal!(u64, i64, 64);
356#[cfg(feature = "i128")]
357generate_integer_equal!(u128, i128, 128);
358generate_integer_equal!(usize, isize, ::core::mem::size_of::<usize>() * 8);
359
360/// A type which can be conditionally selected in constant time.
361///
362/// This trait also provides generic implementations of conditional
363/// assignment and conditional swaps.
364pub trait ConditionallySelectable: Copy {
365    /// Select `a` or `b` according to `choice`.
366    ///
367    /// # Returns
368    ///
369    /// * `a` if `choice == Choice(0)`;
370    /// * `b` if `choice == Choice(1)`.
371    ///
372    /// This function should execute in constant time.
373    ///
374    /// # Example
375    ///
376    /// ```
377    /// # extern crate subtle;
378    /// use subtle::ConditionallySelectable;
379    /// #
380    /// # fn main() {
381    /// let x: u8 = 13;
382    /// let y: u8 = 42;
383    ///
384    /// let z = u8::conditional_select(&x, &y, 0.into());
385    /// assert_eq!(z, x);
386    /// let z = u8::conditional_select(&x, &y, 1.into());
387    /// assert_eq!(z, y);
388    /// # }
389    /// ```
390    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self;
391
392    /// Conditionally assign `other` to `self`, according to `choice`.
393    ///
394    /// This function should execute in constant time.
395    ///
396    /// # Example
397    ///
398    /// ```
399    /// # extern crate subtle;
400    /// use subtle::ConditionallySelectable;
401    /// #
402    /// # fn main() {
403    /// let mut x: u8 = 13;
404    /// let mut y: u8 = 42;
405    ///
406    /// x.conditional_assign(&y, 0.into());
407    /// assert_eq!(x, 13);
408    /// x.conditional_assign(&y, 1.into());
409    /// assert_eq!(x, 42);
410    /// # }
411    /// ```
412    #[inline]
413    fn conditional_assign(&mut self, other: &Self, choice: Choice) {
414        *self = Self::conditional_select(self, other, choice);
415    }
416
417    /// Conditionally swap `self` and `other` if `choice == 1`; otherwise,
418    /// reassign both unto themselves.
419    ///
420    /// This function should execute in constant time.
421    ///
422    /// # Example
423    ///
424    /// ```
425    /// # extern crate subtle;
426    /// use subtle::ConditionallySelectable;
427    /// #
428    /// # fn main() {
429    /// let mut x: u8 = 13;
430    /// let mut y: u8 = 42;
431    ///
432    /// u8::conditional_swap(&mut x, &mut y, 0.into());
433    /// assert_eq!(x, 13);
434    /// assert_eq!(y, 42);
435    /// u8::conditional_swap(&mut x, &mut y, 1.into());
436    /// assert_eq!(x, 42);
437    /// assert_eq!(y, 13);
438    /// # }
439    /// ```
440    #[inline]
441    fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice) {
442        let t: Self = *a;
443        a.conditional_assign(&b, choice);
444        b.conditional_assign(&t, choice);
445    }
446}
447
448macro_rules! to_signed_int {
449    (u8) => {
450        i8
451    };
452    (u16) => {
453        i16
454    };
455    (u32) => {
456        i32
457    };
458    (u64) => {
459        i64
460    };
461    (u128) => {
462        i128
463    };
464    (i8) => {
465        i8
466    };
467    (i16) => {
468        i16
469    };
470    (i32) => {
471        i32
472    };
473    (i64) => {
474        i64
475    };
476    (i128) => {
477        i128
478    };
479}
480
481macro_rules! generate_integer_conditional_select {
482    ($($t:tt)*) => ($(
483        impl ConditionallySelectable for $t {
484            #[inline]
485            fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
486                // if choice = 0, mask = (-0) = 0000...0000
487                // if choice = 1, mask = (-1) = 1111...1111
488                let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
489                a ^ (mask & (a ^ b))
490            }
491
492            #[inline]
493            fn conditional_assign(&mut self, other: &Self, choice: Choice) {
494                // if choice = 0, mask = (-0) = 0000...0000
495                // if choice = 1, mask = (-1) = 1111...1111
496                let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
497                *self ^= mask & (*self ^ *other);
498            }
499
500            #[inline]
501            fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice) {
502                // if choice = 0, mask = (-0) = 0000...0000
503                // if choice = 1, mask = (-1) = 1111...1111
504                let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
505                let t = mask & (*a ^ *b);
506                *a ^= t;
507                *b ^= t;
508            }
509         }
510    )*)
511}
512
513generate_integer_conditional_select!(  u8   i8);
514generate_integer_conditional_select!( u16  i16);
515generate_integer_conditional_select!( u32  i32);
516generate_integer_conditional_select!( u64  i64);
517#[cfg(feature = "i128")]
518generate_integer_conditional_select!(u128 i128);
519
520impl ConditionallySelectable for Choice {
521    #[inline]
522    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
523        Choice(u8::conditional_select(&a.0, &b.0, choice))
524    }
525}
526
527/// A type which can be conditionally negated in constant time.
528///
529/// # Note
530///
531/// A generic implementation of `ConditionallyNegatable` is provided
532/// for types `T` which are `ConditionallySelectable` and have `Neg`
533/// implemented on `&T`.
534pub trait ConditionallyNegatable {
535    /// Negate `self` if `choice == Choice(1)`; otherwise, leave it
536    /// unchanged.
537    ///
538    /// This function should execute in constant time.
539    fn conditional_negate(&mut self, choice: Choice);
540}
541
542impl<T> ConditionallyNegatable for T
543where
544    T: ConditionallySelectable,
545    for<'a> &'a T: Neg<Output = T>,
546{
547    #[inline]
548    fn conditional_negate(&mut self, choice: Choice) {
549        // Need to cast to eliminate mutability
550        let self_neg: T = -(self as &T);
551        self.conditional_assign(&self_neg, choice);
552    }
553}
554
555/// The `CtOption<T>` type represents an optional value similar to the
556/// [`Option<T>`](core::option::Option) type but is intended for
557/// use in constant time APIs.
558///
559/// Any given `CtOption<T>` is either `Some` or `None`, but unlike
560/// `Option<T>` these variants are not exposed. The
561/// [`is_some()`](CtOption::is_some) method is used to determine if
562/// the value is `Some`, and [`unwrap_or()`](CtOption::unwrap_or) and
563/// [`unwrap_or_else()`](CtOption::unwrap_or_else) methods are
564/// provided to access the underlying value. The value can also be
565/// obtained with [`unwrap()`](CtOption::unwrap) but this will panic
566/// if it is `None`.
567///
568/// Functions that are intended to be constant time may not produce
569/// valid results for all inputs, such as square root and inversion
570/// operations in finite field arithmetic. Returning an `Option<T>`
571/// from these functions makes it difficult for the caller to reason
572/// about the result in constant time, and returning an incorrect
573/// value burdens the caller and increases the chance of bugs.
574#[derive(Clone, Copy, Debug)]
575pub struct CtOption<T> {
576    value: T,
577    is_some: Choice,
578}
579
580impl<T> From<CtOption<T>> for Option<T> {
581    /// Convert the `CtOption<T>` wrapper into an `Option<T>`, depending on whether
582    /// the underlying `is_some` `Choice` was a `0` or a `1` once unwrapped.
583    ///
584    /// # Note
585    ///
586    /// This function exists to avoid ending up with ugly, verbose and/or bad handled
587    /// conversions from the `CtOption<T>` wraps to an `Option<T>` or `Result<T, E>`.
588    /// This implementation doesn't intend to be constant-time nor try to protect the
589    /// leakage of the `T` since the `Option<T>` will do it anyways.
590    fn from(source: CtOption<T>) -> Option<T> {
591        if source.is_some().unwrap_u8() == 1u8 {
592            Some(source.value)
593        } else {
594            None
595        }
596    }
597}
598
599impl<T> CtOption<T> {
600    /// This method is used to construct a new `CtOption<T>` and takes
601    /// a value of type `T`, and a `Choice` that determines whether
602    /// the optional value should be `Some` or not. If `is_some` is
603    /// false, the value will still be stored but its value is never
604    /// exposed.
605    #[inline]
606    pub fn new(value: T, is_some: Choice) -> CtOption<T> {
607        CtOption {
608            value,
609            is_some,
610        }
611    }
612
613    /// This method is used to construct a new `CtOption<T>` and takes
614    /// a value of type `T`, and a `Choice` that determines whether
615    /// the optional value should be `Some` or not. If `is_some` is
616    /// false, the value will still be stored but its value is never
617    /// exposed. Intended for const fn situations where value is known
618    #[inline]
619    pub const fn new_unchecked(value: T, is_some: Choice) -> CtOption<T> {
620        Self {
621            value,
622            is_some
623        }
624    }
625
626    /// This returns the underlying value but panics if it
627    /// is not `Some`.
628    #[inline]
629    pub fn unwrap(self) -> T {
630        assert_eq!(self.is_some.unwrap_u8(), 1);
631
632        self.value
633    }
634
635    /// This returns the underlying value if it is `Some`
636    /// or the provided value otherwise.
637    #[inline]
638    pub fn unwrap_or(self, def: T) -> T
639    where
640        T: ConditionallySelectable,
641    {
642        T::conditional_select(&def, &self.value, self.is_some)
643    }
644
645    /// This returns the underlying value if it is `Some`
646    /// or the value produced by the provided closure otherwise.
647    #[inline]
648    pub fn unwrap_or_else<F>(self, f: F) -> T
649    where
650        T: ConditionallySelectable,
651        F: FnOnce() -> T,
652    {
653        T::conditional_select(&f(), &self.value, self.is_some)
654    }
655
656    /// Returns a true `Choice` if this value is `Some`.
657    #[inline]
658    pub fn is_some(&self) -> Choice {
659        self.is_some
660    }
661
662    /// Returns a true `Choice` if this value is `None`.
663    #[inline]
664    pub fn is_none(&self) -> Choice {
665        !self.is_some
666    }
667
668    /// Returns a `None` value if the option is `None`, otherwise
669    /// returns a `CtOption` enclosing the value of the provided closure.
670    /// The closure is given the enclosed value or, if the option is
671    /// `None`, it is provided a dummy value computed using
672    /// `Default::default()`.
673    ///
674    /// This operates in constant time, because the provided closure
675    /// is always called.
676    #[inline]
677    pub fn map<U, F>(self, f: F) -> CtOption<U>
678    where
679        T: Default + ConditionallySelectable,
680        F: FnOnce(T) -> U,
681    {
682        CtOption::new(
683            f(T::conditional_select(
684                &T::default(),
685                &self.value,
686                self.is_some,
687            )),
688            self.is_some,
689        )
690    }
691
692    /// Returns a `None` value if the option is `None`, otherwise
693    /// returns the result of the provided closure. The closure is
694    /// given the enclosed value or, if the option is `None`, it
695    /// is provided a dummy value computed using `Default::default()`.
696    ///
697    /// This operates in constant time, because the provided closure
698    /// is always called.
699    #[inline]
700    pub fn and_then<U, F>(self, f: F) -> CtOption<U>
701    where
702        T: Default + ConditionallySelectable,
703        F: FnOnce(T) -> CtOption<U>,
704    {
705        let mut tmp = f(T::conditional_select(
706            &T::default(),
707            &self.value,
708            self.is_some,
709        ));
710        tmp.is_some &= self.is_some;
711
712        tmp
713    }
714
715    /// Returns `self` if it contains a value, and otherwise returns the result of
716    /// calling `f`. The provided function `f` is always called.
717    #[inline]
718    pub fn or_else<F>(self, f: F) -> CtOption<T>
719    where
720        T: ConditionallySelectable,
721        F: FnOnce() -> CtOption<T>,
722    {
723        let is_none = self.is_none();
724        let f = f();
725
726        Self::conditional_select(&self, &f, is_none)
727    }
728}
729
730impl<T: ConditionallySelectable> ConditionallySelectable for CtOption<T> {
731    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
732        CtOption::new(
733            T::conditional_select(&a.value, &b.value, choice),
734            Choice::conditional_select(&a.is_some, &b.is_some, choice),
735        )
736    }
737}
738
739impl<T: ConstantTimeEq> ConstantTimeEq for CtOption<T> {
740    /// Two `CtOption<T>`s are equal if they are both `Some` and
741    /// their values are equal, or both `None`.
742    #[inline]
743    fn ct_eq(&self, rhs: &CtOption<T>) -> Choice {
744        let a = self.is_some();
745        let b = rhs.is_some();
746
747        (a & b & self.value.ct_eq(&rhs.value)) | (!a & !b)
748    }
749}
750
751/// A type which can be compared in some manner and be determined to be greater
752/// than another of the same type.
753pub trait ConstantTimeGreater {
754    /// Determine whether `self > other`.
755    ///
756    /// The bitwise-NOT of the return value of this function should be usable to
757    /// determine if `self <= other`.
758    ///
759    /// This function should execute in constant time.
760    ///
761    /// # Returns
762    ///
763    /// A `Choice` with a set bit if `self > other`, and with no set bits
764    /// otherwise.
765    ///
766    /// # Example
767    ///
768    /// ```
769    /// # extern crate subtle;
770    /// use subtle::ConstantTimeGreater;
771    ///
772    /// let x: u8 = 13;
773    /// let y: u8 = 42;
774    ///
775    /// let x_gt_y = x.ct_gt(&y);
776    ///
777    /// assert_eq!(x_gt_y.unwrap_u8(), 0);
778    ///
779    /// let y_gt_x = y.ct_gt(&x);
780    ///
781    /// assert_eq!(y_gt_x.unwrap_u8(), 1);
782    ///
783    /// let x_gt_x = x.ct_gt(&x);
784    ///
785    /// assert_eq!(x_gt_x.unwrap_u8(), 0);
786    /// ```
787    fn ct_gt(&self, other: &Self) -> Choice;
788}
789
790macro_rules! generate_unsigned_integer_greater {
791    ($t_u: ty, $bit_width: expr) => {
792        impl ConstantTimeGreater for $t_u {
793            /// Returns Choice::from(1) iff x > y, and Choice::from(0) iff x <= y.
794            ///
795            /// # Note
796            ///
797            /// This algoritm would also work for signed integers if we first
798            /// flip the top bit, e.g. `let x: u8 = x ^ 0x80`, etc.
799            #[inline]
800            fn ct_gt(&self, other: &$t_u) -> Choice {
801                let gtb = self & !other; // All the bits in self that are greater than their corresponding bits in other.
802                let mut ltb = !self & other; // All the bits in self that are less than their corresponding bits in other.
803                let mut pow = 1;
804
805                // Less-than operator is okay here because it's dependent on the bit-width.
806                while pow < $bit_width {
807                    ltb |= ltb >> pow; // Bit-smear the highest set bit to the right.
808                    pow += pow;
809                }
810                let mut bit = gtb & !ltb; // Select the highest set bit.
811                let mut pow = 1;
812
813                while pow < $bit_width {
814                    bit |= bit >> pow; // Shift it to the right until we end up with either 0 or 1.
815                    pow += pow;
816                }
817                // XXX We should possibly do the above flattening to 0 or 1 in the
818                //     Choice constructor rather than making it a debug error?
819                Choice::from((bit & 1) as u8)
820            }
821        }
822    }
823}
824
825generate_unsigned_integer_greater!(u8, 8);
826generate_unsigned_integer_greater!(u16, 16);
827generate_unsigned_integer_greater!(u32, 32);
828generate_unsigned_integer_greater!(u64, 64);
829#[cfg(feature = "i128")]
830generate_unsigned_integer_greater!(u128, 128);
831
832/// A type which can be compared in some manner and be determined to be less
833/// than another of the same type.
834pub trait ConstantTimeLess: ConstantTimeEq + ConstantTimeGreater {
835    /// Determine whether `self < other`.
836    ///
837    /// The bitwise-NOT of the return value of this function should be usable to
838    /// determine if `self >= other`.
839    ///
840    /// A default implementation is provided and implemented for the unsigned
841    /// integer types.
842    ///
843    /// This function should execute in constant time.
844    ///
845    /// # Returns
846    ///
847    /// A `Choice` with a set bit if `self < other`, and with no set bits
848    /// otherwise.
849    ///
850    /// # Example
851    ///
852    /// ```
853    /// # extern crate subtle;
854    /// use subtle::ConstantTimeLess;
855    ///
856    /// let x: u8 = 13;
857    /// let y: u8 = 42;
858    ///
859    /// let x_lt_y = x.ct_lt(&y);
860    ///
861    /// assert_eq!(x_lt_y.unwrap_u8(), 1);
862    ///
863    /// let y_lt_x = y.ct_lt(&x);
864    ///
865    /// assert_eq!(y_lt_x.unwrap_u8(), 0);
866    ///
867    /// let x_lt_x = x.ct_lt(&x);
868    ///
869    /// assert_eq!(x_lt_x.unwrap_u8(), 0);
870    /// ```
871    #[inline]
872    fn ct_lt(&self, other: &Self) -> Choice {
873        !self.ct_gt(other) & !self.ct_eq(other)
874    }
875}
876
877impl ConstantTimeLess for u8 {}
878impl ConstantTimeLess for u16 {}
879impl ConstantTimeLess for u32 {}
880impl ConstantTimeLess for u64 {}
881#[cfg(feature = "i128")]
882impl ConstantTimeLess for u128 {}