1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
pub mod dp {
    //! This is a module for dynamic programming.
    use std::collections::HashMap;
    use rayon::prelude::*;
    use std::sync::{Arc, Mutex};

    fn gcd_multi(v: Vec<u32>) -> u32 {
        let mut result = v[0];
        for i in 1..v.len() {
            result = gcd(result, v[i]);
        }
        result
    }

    fn gcd(a: u32, b: u32) -> u32 {
        if b == 0 {
            a
        } else {
            gcd(b, a % b)
        }
    }
    #[test]
    fn test_gcd() {
        assert_eq!(gcd(20, 10), 10);
        assert_eq!(gcd(55, 5), 5);
        assert_eq!(gcd(991, 997), 1);
    }

    #[test]
    fn test_gcd_multi() {
        assert_eq!(gcd_multi(vec![5, 10, 20]), 5);
        assert_eq!(gcd_multi(vec![131, 863, 887]), 1);
    }
    /// Finds subsets sum of a target value. It can accept negative values.
    ///
    /// # Arguments
    /// * `arr` - An array.
    /// * `value` - The value to the sum of the subset comes.
    /// * `max_length` - The maximum length of combinations of the answer.
    /// # Example
    /// ```
    ///
    /// use dpss::dp::find_subset;
    /// let arr = vec![-1, -3, -2, 6, 12, 48];
    /// let result = find_subset(arr, 0, 4);
    /// let route1: Vec<i32> = vec![-3, -2, -1, 6];
    /// let answer: Vec<Vec<i32>> = vec![route1];
    /// assert_eq!(result, answer);
    /// ```
    ///
    /// # Return Value
    /// ```
    ///
    /// use dpss::dp::find_subset;
    /// let result = find_subset(vec![1, 2, 3, -4, 5], 1, 2);
    /// println!("{:?}", result);
    /// ```
    /// output: `[[1], [-3, 4]]`
    pub fn find_subset(arr: Vec<i32>, value: i32, max_length: usize) -> Vec<Vec<i32>> {
        use std::cmp::max;
        use std::cmp::min;
        // https://stackoverflow.com/questions/43078142/subset-sum-with-negative-values-in-c-or-c
        // Find a subset even if an array contains negative values.
        let mut b: Vec<u32> = Vec::with_capacity(arr.len());
        let answer: Arc<Mutex<Vec<Vec<i32>>>> = Arc::new(Mutex::new(vec![]));
        if arr.iter().min().unwrap() >= &0 && value > 0 {
            for i in arr {
                b.push(i as u32);
            }
            let result = find_subset_fast_only_positive(&b, value as usize, max_length);
            for i in result {
                let mut tempvec = Vec::with_capacity(i.len());
                for j in i {
                    tempvec.push(j as i32);
                }
                answer.lock().unwrap().push(tempvec)
            }
            return answer.lock().unwrap().to_vec();
        } else {
            let length = arr.len();
            let offset: u32 =
                (max(arr.iter().min().unwrap().abs() + 1, min(value, 0).abs() + 1)) as u32;
            for i in arr {
                b.push((i + offset as i32) as u32);
            }
            // We will transform the array into a new array whose elements are all positive.
            // And check if the transformed sum of the result of the new array is equal to the target value.
            // If we find the sum is the same as the target, we will return the result.
            (1..min(length, max_length) + 1).into_par_iter().for_each(|i| {
                let result = _find_subset_fast_only_positive(
                    &b,
                    (value + i as i32 * offset as i32) as usize,
                    max_length,
                );
                for res in result {
                    let mut tempsum: i32 = 0;
                    let mut new_res: Vec<i32> = Vec::with_capacity(res.len());
                    for j in res {
                        tempsum += j as i32 - offset as i32;
                        new_res.push(j as i32 - offset as i32);
                    }
                    if tempsum == value as i32 {
                        answer.lock().unwrap().push(new_res);
                    }
                }
            });
            return vector_sorter(answer.lock().unwrap().to_vec());
        };
    }

    fn rec(
        dp: &Vec<i32>,
        arr: &Vec<u32>,
        i: usize,
        j: usize,
        route: &mut Vec<u32>,
        answer: &mut Vec<Vec<u32>>,
        max_length: usize,
        collen: usize
    ) {
        // This code is mostly copied from https://drken1215.hatenablog.com/entry/2019/12/17/190300
        // We follow the dp table backward to find combinations of subsets.
        // We call this function recursively twice and this means the call stack expands like a tree.
        if i == 0 {
            if j == 0 {
                // Only if we reach the root of the dp table, we choose the combination as an answer.
                if route.len() <= max_length {
                    answer.push(route.clone());
                }
            }
            return;
        }

        if route.len() > max_length {
            return;
        }

        if dp[(i - 1) * collen + j] != 0 {
            rec(dp, arr, i - 1, j, route, answer, max_length, collen);
        }

        if j as i32 - arr[i - 1] as i32 >= 0 && dp[(i - 1) * collen + j - arr[i - 1] as usize] != 0 {
            // Choose this element as arr candidate for an answer.
            route.push(arr[i - 1]);
            rec(
                dp,
                arr,
                i - 1,
                j - arr[i - 1] as usize,
                route,
                answer,
                max_length,
                collen
            );
            // Remove this element after we reach i == 0 regardless of whether we reach j == 0.
            route.pop();
        }
    }

    fn vector_sorter<T: std::cmp::Ord + std::iter::Sum + std::clone::Clone + Copy>(
        vec: Vec<Vec<T>>,
    ) -> Vec<Vec<T>> {
        if vec.len() == 0 {
            return vec;
        }
        let max_length = vec
            .iter()
            .map(|x| x.len())
            .collect::<Vec<usize>>()
            .iter()
            .max()
            .unwrap()
            .clone();
        let mut newvec: Vec<Vec<T>> = vec![];
        for i in 0..max_length + 1 {
            let mut tempv: Vec<Vec<T>> = vec![];
            for v in vec.iter() {
                if v.len() == i {
                    let mut v_ = v.clone();
                    v_.sort();
                    tempv.push(v_.to_vec());
                }
            }
            for j in (0..i).rev() {
                tempv.sort_by_key(|x| x[j]);
            }
            newvec.append(&mut tempv);
        }
        newvec
    }

    fn filter_j_idx(value: usize, arr: &Vec<u32>) -> (Vec<usize>, u32) {
        // a_min is the minimum number in an except for zero.
        let mut a_min = arr.iter().max().unwrap();
        let mut a_no_zero: Vec<u32> = Vec::with_capacity(arr.len());
        for i in arr {
            if i > &0 {
                if a_min > &i {
                    a_min = &i
                }
                a_no_zero.push(*i);
            }
        }
        let mut j_indexes: Vec<usize> = Vec::with_capacity(value + 1);
        let gcd = gcd_multi(a_no_zero);
        // j of the range of 1 to a_min-1 must be zero.
        // For example, if a_min = 10, there is no way to make sum 5.
        // Also, if j == 8 and target = 10 and a_min=5, we can't reach 10.
        // If all the numbers are even, j should be even.
        for j in 0..value + 1 {
            if (j as u32 >= *a_min && j as u32 <= value as u32 - *a_min && j as u32 % gcd == 0)
                || j as u32 == 0
                || j == value
            {
                j_indexes.push(j)
            }
        }
        (j_indexes, *a_min)
    }

    #[test]
    fn test_filter_j_idx() {
        let (result, _a_min) = filter_j_idx(10, &vec![3, 4, 5, 6, 7, 8, 9, 10]);
        let answer: Vec<usize> = vec![0, 3, 4, 5, 6, 7, 10];
        assert_eq!(result, answer);

        let (result, _a_min) = filter_j_idx(5, &vec![3, 4, 5]);
        let answer: Vec<usize> = vec![0, 5];
        assert_eq!(result, answer);

        let (result, _a_min) = filter_j_idx(10, &vec![0, 2, 4, 6, 8]);
        let answer: Vec<usize> = vec![0, 2, 4, 6, 8, 10];
        assert_eq!(result, answer);

        let (result, _a_min) = filter_j_idx(20, &vec![10, 20, 30, 40, 50]);
        let answer: Vec<usize> = vec![0, 10, 20];
        assert_eq!(result, answer);

        let (result, _a_min) = filter_j_idx(8, &vec![2, 3, 5, 7]);
        let answer: Vec<usize> = vec![0, 2, 3, 4, 5, 6, 8];
        assert_eq!(result, answer);
    }
    /// Finds subsets sum of a target value. It can't accept negative values but relatively faster.
    /// # Arguments
    /// * `arr` - An array.
    /// * `value` - The value to the sum of the subset comes.
    /// * `max_length` - The maximum length of combinations of the answer.
    /// # Example
    /// ```
    ///
    /// use dpss::dp::find_subset_fast_only_positive;
    /// let result = find_subset_fast_only_positive(&vec![1, 2, 3], 3, 2);
    /// let route1: Vec<u32> = vec![3];
    /// let route2: Vec<u32> = vec![1, 2];
    /// let answer: Vec<Vec<u32>> = vec![route1, route2];
    /// assert_eq!(result, answer);
    /// ```
    /// # Return Value
    /// ```
    ///
    /// use dpss::dp::find_subset_fast_only_positive;
    /// let result = find_subset_fast_only_positive(&vec![1, 2, 3, 4, 5], 10, 4);
    /// println!("{:?}", result);
    /// ```
    /// output: `[[1, 4, 5], [2, 3, 5], [1, 2, 3, 4]]`
    pub fn find_subset_fast_only_positive(
        arr: &Vec<u32>,
        value: usize,
        max_length: usize,
    ) -> Vec<Vec<u32>> {
        let answer = _find_subset_fast_only_positive(arr, value, max_length);
        vector_sorter(answer)
    }

    fn _find_subset_fast_only_positive(
        arr: &Vec<u32>,
        value: usize,
        max_length: usize,
    ) -> Vec<Vec<u32>> {
        // dp is a table that stores the information of subset sum.
        // dp[i][j] is the number of ways to make sum j with i element.
        // We follow from the start of this table.
        // let mut dp: Vec<Vec<i32>> = vec![vec![0; value + 1]; arr.len() + 1];
        let collen = value + 1;
        let mut dp: Vec<i32> = vec![0; (value + 1) * (arr.len() + 1)];
        dp[0] = 1;

        let (j_indexes, _a_min) = filter_j_idx(value, arr);
        for i in 0..arr.len() {
            for j in &j_indexes {
                // If we don't choose to select an element to sum,
                // the ways to make a sum are the same as with the previous element.
                // dp[i + 1][*j] += dp[i][*j];
                dp[(i + 1) * collen + *j] += dp[i * collen + *j]; 

                // Skip if j + the element is larger than the target value.
                if *j as u32 + arr[i] < value as u32 + 1 {
                    // This means we find another way to make sum j with i elements
                    // when we choose this element as an element to sum.
                    // dp[i + 1][j + arr[i] as usize] += dp[i][*j];
                    dp[(i + 1) * collen + j + arr[i] as usize] += dp[i * collen + *j]; 

                }
            }
        }
        let a_length: usize = arr.len();
        let mut route: Vec<u32> = Vec::with_capacity(max_length);
        let mut answer: Vec<Vec<u32>> = vec![];

        rec(
            &dp,
            &arr,
            a_length,
            value,
            &mut route,
            &mut answer,
            max_length,
            collen
        );
        answer
    }

    fn vec_remove(arr: &mut Vec<i32>, v: i32) {
        let index = arr.iter().position(|x| *x == v).unwrap();
        arr.remove(index);
    }

    /// Finds the integers from two vectors that sum to the same value.
    /// This method assumes that the two vectors have Many-to-Many relationships.
    /// Each integer of the `keys` vector corresponds to the multiple integers of the `targets` vector.
    /// With this method, we can find combinations of the integers.
    /// # Arguments
    /// * `keys` - An array.
    /// * `targets` - An array.
    /// * `max_key_length` - An integer.
    /// * `max_target_length` - An integer.
    /// * `n_candidates` - An integer.
    /// # Example
    ///
    /// ```rust
    ///
    ///use dpss::dp::sequence_matcher;
    ///let answer = sequence_matcher(&mut vec![1980, 2980, 3500, 4000, 1050], &mut vec![1950, 2900, 30, 80, 3300, 200, 3980, 1050, 20], 10, 10, 2);
    ///assert_eq!(answer[0], vec![
    ///    (vec![1050],
    ///     vec![1050]),
    ///
    ///     (vec![1980],
    ///     vec![30, 1950]),
    ///
    ///     (vec![2980],
    ///     vec![80, 2900]),
    ///
    ///     (vec![3500],
    ///     vec![200, 3300]),
    ///
    ///     (vec![4000],
    ///     vec![20, 3980]),
    ///
    ///    ]);
    ///assert_eq!(answer[1], vec![
    ///    (vec![1980],
    ///     vec![30, 1950]),
    ///
    ///     (vec![2980],
    ///     vec![80, 2900]),
    ///
    ///     (vec![3500],
    ///     vec![200, 3300]),
    ///
    ///     (vec![1050, 4000],
    ///     vec![20, 1050, 3980]),
    ///
    ///    ]);
    /// ```
    pub fn sequence_matcher(
        keys: &mut Vec<i32>,
        targets: &mut Vec<i32>,
        max_key_length: usize,
        max_target_length: usize,
        n_candidates: usize,
    ) -> Vec<Vec<(Vec<i32>, Vec<i32>)>> {
        let mut group: Vec<(Vec<i32>, Vec<i32>)> = vec![];
        let mut answer: Arc<Mutex<Vec<Vec<(Vec<i32>, Vec<i32>)>>>> = Arc::new(Mutex::new(vec![]));
        if keys.iter().sum::<i32>() != targets.iter().sum() {
            println!("The sum of the keys must be equal to the sum of the targets.");
            return answer.lock().unwrap().to_vec();
        }
        let mut hashmap_fs: Arc<Mutex<HashMap<(Vec<i32>, i32), Vec<Vec<i32>>>>> = Arc::new(Mutex::new(HashMap::new()));
        sequence_matcher_core(
            keys,
            targets,
            &mut group,
            &mut answer,
            max_key_length,
            max_target_length,
            &mut hashmap_fs,
            n_candidates
        );
        let mut answer2 : Vec<Vec<(Vec<i32>, Vec<i32>)>> = answer.lock().unwrap().to_vec();
        for i in 0..answer2.len() {
            answer2[i].sort_by_key(|k| k.0.iter().sum::<i32>());
            answer2[i].sort_by_key(|k| k.0.len());
        }
        answer2.sort();
        answer2.dedup();
        // answer2.sort_by_key(|x| sequence_matcher_sort(x.to_vec()));
        if answer2.len() == 0 {
            println!("Can't find any combination.");
        }
        answer2
    }

    fn sequence_matcher_core(
        keys: &mut Vec<i32>,
        targets: &mut Vec<i32>,
        group: &mut Vec<(Vec<i32>, Vec<i32>)>,
        answer: &mut Arc<Mutex<Vec<Vec<(Vec<i32>, Vec<i32>)>>>>,
        max_key_length: usize,
        max_target_length: usize,
        hashmap_fs: &mut Arc<Mutex<HashMap<(Vec<i32>, i32), Vec<Vec<i32>>>>>,
        n_candidates: usize,
    ) {
        use itertools::Itertools;
        if answer.lock().unwrap().len() >= n_candidates {
            return;
        }

        if keys.len() == 0 && targets.len() == 0 {
            group.sort_by_key(|k| k.0.iter().sum::<i32>());
            group.sort_by_key(|k| k.0.len());
            if answer.lock().unwrap().contains(&group) {
                return;
            } else {
                answer.lock().unwrap().push(group.clone());
                return;
            }
        }
        if (keys.len() == 0 && targets.len() > 0) || (keys.len() > 0 && targets.len() == 0) {
            return;
        }
        targets.sort();
        (0..keys.len()).powerset().filter(|x| x.len() <= max_key_length).par_bridge().for_each(|i| {
            let keys2 = keys.clone();
            let targets2 = targets.clone();
            let group2 = group.clone();
            let mut sum_key = 0;
            let mut vec_key = vec![];
            for j in i.iter() {
                sum_key += keys2[*j];
                vec_key.push(keys2[*j].clone());
            }
            vec_key.sort();
            if sum_key > targets2.iter().sum() {
                return;
            }
            if targets2.iter().max().unwrap() == &0 {
                return;
            }
            let set_ = match hashmap_fs.try_lock() {
                Ok(mut v) => v.entry((targets2.clone(), sum_key))
                    .or_insert(find_subset(targets2.clone(), sum_key, max_target_length))
                    .clone(),
                Err(_) => find_subset(targets2.clone(), sum_key, max_target_length)
            };
            if set_.len() == 0 {
                return;
            }
            set_.par_iter().for_each(|set| {
                let mut keys3 = keys2.clone();
                let mut targets3 = targets2.clone();
                let mut group3 = group2.clone();
                group3.push((vec_key.clone(), set.clone()));
                for j in set.clone() {
                    vec_remove(&mut targets3, j);
                }
                for i in vec_key.clone() {
                    vec_remove(&mut keys3, i);
                }
                sequence_matcher_core(
                    &mut keys3,
                    &mut targets3,
                    &mut group3,
                    &mut answer.clone(),
                    max_key_length,
                    max_target_length,
                    &mut hashmap_fs.clone(),
                    n_candidates
                );
            })
        });
    }

    #[test]
    fn test_sequence_matcher() {
        let answer = sequence_matcher(
            &mut vec![6, 7, 3, 2, -9, -3, 8, 3, 6, -10],
            &mut vec![3, 2, -6, -8, 2, -9, 0, -5, -3, 37],
            7,
            6,
            30
        );
        assert_eq!(answer.len(), 30);

        let answer = sequence_matcher(
            &mut vec![100, 200, 300, 400, 500, 600, -700, 800, 900, 1000],
            &mut vec![300, 700, 500, 600, -700, 2700],
            3,
            2,
            200
        );
        assert_eq!(answer.len(), 197);
        assert_eq!(
            answer[0],
            vec![
                (vec![], vec![-700, 700]),
                (vec![200, 300], vec![500]),
                (vec![100, 500], vec![600]),
                (vec![-700, 400, 600], vec![300]),
                (vec![800, 900, 1000], vec![2700]),
            ]
        );

        let answer = sequence_matcher(&mut vec![9, 0, 1, 7, 1], &mut vec![7, 2, 8, 0, 1], 3, 2, 100);
        assert_eq!(answer.len(), 37);
        assert_eq!(
            answer[0],
            vec![
                (vec![], vec![0]),
                (vec![0, 9], vec![1, 8]),
                (vec![1, 1, 7], vec![2, 7]),
            ]
        );

        let answer = sequence_matcher(
            &mut vec![1000, 1100, 150, 123, 5, 10],
            &mut vec![2100, 273, 4, 11],
            6,
            4,
            200
        );
        assert_eq!(answer.len(), 5);
        assert_eq!(
            answer[0],
            vec![
                (vec![5, 10], vec![4, 11]),
                (vec![123, 150], vec![273]),
                (vec![1000, 1100], vec![2100]),
            ]
        );
        assert_eq!(
            answer[2],
            vec![
                (vec![5, 10, 123, 150, 1000, 1100], vec![4, 11, 273, 2100]),
            ]
        );

        let answer = sequence_matcher(
            &mut vec![1000, 1100, 150, 123, 5, 10],
            &mut vec![1000, 1200],
            10,
            10,
            2
        );
        assert_eq!(answer.len(), 0);

        let answer = sequence_matcher(&mut vec![-950, 10000], &mut vec![5000, 4000, 50], 10, 10, 2);
        assert_eq!(answer[0], vec![(vec![-950, 10000], vec![50, 4000, 5000]),]);

        let answer = sequence_matcher(&mut vec![1, 2, 3, 4], &mut vec![1, 5], 10, 10, 2);

        assert_eq!(answer.len(), 0);

        let answer = sequence_matcher(
            &mut vec![183, 36, 231, 128, 137],
            &mut vec![8, 9, 15, 15, 33, 36, 39, 45, 46, 60, 68, 73, 80, 92, 96],
            1,
            15,
            20
        );

        assert_eq!(answer.len(), 13);
        assert_eq!(
            answer[0],
            vec![
                (vec![36], vec![36]),
                (vec![128], vec![9, 39, 80]),
                (vec![137], vec![8, 33, 96]),
                (vec![183], vec![45, 46, 92]),
                (vec![231], vec![15, 15, 60, 68, 73]),
            ]
        );
    }
}

#[cfg(test)]
mod tests {

    use super::*;

    #[test]
    fn test_find_subset_fast_only_positive() {
        let result = dp::find_subset_fast_only_positive(&vec![1, 2, 3], 3, 2);
        let route1: Vec<u32> = vec![3];
        let route2: Vec<u32> = vec![1, 2];
        let answer: Vec<Vec<u32>> = vec![route1, route2];
        assert_eq!(result, answer);

        let result = dp::find_subset_fast_only_positive(&vec![0, 3, 5, 10], 3, 2);
        let route1: Vec<u32> = vec![3];
        let route2: Vec<u32> = vec![0, 3];
        let answer: Vec<Vec<u32>> = vec![route1, route2];
        assert_eq!(result, answer);

        let result = dp::find_subset_fast_only_positive(&vec![1, 2, 3, 0], 3, 3);
        let route1: Vec<u32> = vec![3];
        let route2: Vec<u32> = vec![0, 3];
        let route3: Vec<u32> = vec![1, 2];
        let route4: Vec<u32> = vec![0, 1, 2];
        let answer: Vec<Vec<u32>> = vec![route1, route2, route3, route4];
        assert_eq!(result, answer);
    }

    #[test]
    fn test_find_subset() {
        let result = dp::find_subset(vec![1, 2, 3], 3, 2);
        let route1: Vec<i32> = vec![3];
        let route2: Vec<i32> = vec![1, 2];
        let answer: Vec<Vec<i32>> = vec![route1, route2];
        assert_eq!(result, answer);

        let result = dp::find_subset(vec![1, 2, 3, 4, 5], 10, 4);
        let route1: Vec<i32> = vec![1, 4, 5];
        let route2: Vec<i32> = vec![2, 3, 5];
        let route3: Vec<i32> = vec![1, 2, 3, 4];
        let answer: Vec<Vec<i32>> = vec![route1, route2, route3];
        assert_eq!(result, answer);

        let result = dp::find_subset(vec![1, 2, 3, 4, 5], 10, 3);
        let route2: Vec<i32> = vec![1, 4, 5];
        let route3: Vec<i32> = vec![2, 3, 5];
        let answer: Vec<Vec<i32>> = vec![route2, route3];
        assert_eq!(result, answer);

        let arr = vec![75, 467, 512, -835, 770, -69, 10];
        let result = dp::find_subset(arr, 711, 3);
        let route1: Vec<i32> = vec![-69, 10, 770];
        let answer: Vec<Vec<i32>> = vec![route1];
        assert_eq!(result, answer);

        let arr = vec![-3, 10, 56, -33, 65, -9, 8, 72, 63, 35];
        let result = dp::find_subset(arr, 7, 4);
        let route1: Vec<i32> = vec![-3, 10];
        let route2: Vec<i32> = vec![-33, -3, 8, 35];
        let answer: Vec<Vec<i32>> = vec![route1, route2];
        assert_eq!(result, answer);

        let arr = vec![
            73209, 95597, 84735, 40496, 83553, 95595, -628, 201, 27597, 7904, 98445, 6241, 33002,
            -776, -711, 45552, 86746, 84248, 66278, 37475,
        ];
        let result = dp::find_subset(arr, 72782, 3);
        let route1: Vec<i32> = vec![-628, 201, 73209];
        let answer: Vec<Vec<i32>> = vec![route1];
        assert_eq!(result, answer);

        let arr = vec![-1, 2, 3];
        let result = dp::find_subset(arr, -1, 1);
        let route1: Vec<i32> = vec![-1];
        let answer: Vec<Vec<i32>> = vec![route1];
        assert_eq!(result, answer);

        let arr = vec![-10, 5, -2];
        let result = dp::find_subset(arr, -5, 2);
        let route1: Vec<i32> = vec![-10, 5];
        let answer: Vec<Vec<i32>> = vec![route1];
        assert_eq!(result, answer);

        let arr = vec![-3, -5, -7];
        let result = dp::find_subset(arr, -15, 3);
        let route1: Vec<i32> = vec![-7, -5, -3];
        let answer: Vec<Vec<i32>> = vec![route1];
        assert_eq!(result, answer);

        let arr = vec![-100, 10, 20];
        let result = dp::find_subset(arr, -70, 3);
        let route1: Vec<i32> = vec![-100, 10, 20];
        let answer: Vec<Vec<i32>> = vec![route1];
        assert_eq!(result, answer);
    }
}