style/values/animated/
transform.rs

1/* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */
4
5//! Animated types for transform.
6// There are still some implementation on Matrix3D in animated_properties.mako.rs
7// because they still need mako to generate the code.
8
9use super::animate_multiplicative_factor;
10use super::{Animate, Procedure, ToAnimatedZero};
11use crate::derives::*;
12use crate::values::computed::transform::Rotate as ComputedRotate;
13use crate::values::computed::transform::Scale as ComputedScale;
14use crate::values::computed::transform::Transform as ComputedTransform;
15use crate::values::computed::transform::TransformOperation as ComputedTransformOperation;
16use crate::values::computed::transform::Translate as ComputedTranslate;
17use crate::values::computed::transform::{DirectionVector, Matrix, Matrix3D};
18use crate::values::computed::Angle;
19use crate::values::computed::{Length, LengthPercentage};
20use crate::values::computed::{Number, Percentage};
21use crate::values::distance::{ComputeSquaredDistance, SquaredDistance};
22use crate::values::generics::transform::{self, Transform, TransformOperation};
23use crate::values::generics::transform::{Rotate, Scale, Translate};
24use crate::values::CSSFloat;
25use crate::Zero;
26use std::cmp;
27use std::ops::Add;
28
29// ------------------------------------
30// Animations for Matrix/Matrix3D.
31// ------------------------------------
32/// A 2d matrix for interpolation.
33#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
34#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
35#[allow(missing_docs)]
36// FIXME: We use custom derive for ComputeSquaredDistance. However, If possible, we should convert
37// the InnerMatrix2D into types with physical meaning. This custom derive computes the squared
38// distance from each matrix item, and this makes the result different from that in Gecko if we
39// have skew factor in the Matrix3D.
40pub struct InnerMatrix2D {
41    pub m11: CSSFloat,
42    pub m12: CSSFloat,
43    pub m21: CSSFloat,
44    pub m22: CSSFloat,
45}
46
47impl Animate for InnerMatrix2D {
48    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
49        Ok(InnerMatrix2D {
50            m11: animate_multiplicative_factor(self.m11, other.m11, procedure)?,
51            m12: self.m12.animate(&other.m12, procedure)?,
52            m21: self.m21.animate(&other.m21, procedure)?,
53            m22: animate_multiplicative_factor(self.m22, other.m22, procedure)?,
54        })
55    }
56}
57
58/// A 2d translation function.
59#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
60#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
61pub struct Translate2D(f32, f32);
62
63/// A 2d scale function.
64#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
65#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
66pub struct Scale2D(f32, f32);
67
68impl Animate for Scale2D {
69    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
70        Ok(Scale2D(
71            animate_multiplicative_factor(self.0, other.0, procedure)?,
72            animate_multiplicative_factor(self.1, other.1, procedure)?,
73        ))
74    }
75}
76
77/// A decomposed 2d matrix.
78#[derive(Clone, Copy, Debug)]
79#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
80pub struct MatrixDecomposed2D {
81    /// The translation function.
82    pub translate: Translate2D,
83    /// The scale function.
84    pub scale: Scale2D,
85    /// The rotation angle.
86    pub angle: f32,
87    /// The inner matrix.
88    pub matrix: InnerMatrix2D,
89}
90
91impl Animate for MatrixDecomposed2D {
92    /// <https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-2d-matrix-values>
93    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
94        // If x-axis of one is flipped, and y-axis of the other,
95        // convert to an unflipped rotation.
96        let mut scale = self.scale;
97        let mut angle = self.angle;
98        let mut other_angle = other.angle;
99        if (scale.0 < 0.0 && other.scale.1 < 0.0) || (scale.1 < 0.0 && other.scale.0 < 0.0) {
100            scale.0 = -scale.0;
101            scale.1 = -scale.1;
102            angle += if angle < 0.0 { 180. } else { -180. };
103        }
104
105        // Don't rotate the long way around.
106        if angle == 0.0 {
107            angle = 360.
108        }
109        if other_angle == 0.0 {
110            other_angle = 360.
111        }
112
113        if (angle - other_angle).abs() > 180. {
114            if angle > other_angle {
115                angle -= 360.
116            } else {
117                other_angle -= 360.
118            }
119        }
120
121        // Interpolate all values.
122        let translate = self.translate.animate(&other.translate, procedure)?;
123        let scale = scale.animate(&other.scale, procedure)?;
124        let angle = angle.animate(&other_angle, procedure)?;
125        let matrix = self.matrix.animate(&other.matrix, procedure)?;
126
127        Ok(MatrixDecomposed2D {
128            translate,
129            scale,
130            angle,
131            matrix,
132        })
133    }
134}
135
136impl ComputeSquaredDistance for MatrixDecomposed2D {
137    #[inline]
138    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
139        // Use Radian to compute the distance.
140        const RAD_PER_DEG: f64 = std::f64::consts::PI / 180.0;
141        let angle1 = self.angle as f64 * RAD_PER_DEG;
142        let angle2 = other.angle as f64 * RAD_PER_DEG;
143        Ok(self.translate.compute_squared_distance(&other.translate)?
144            + self.scale.compute_squared_distance(&other.scale)?
145            + angle1.compute_squared_distance(&angle2)?
146            + self.matrix.compute_squared_distance(&other.matrix)?)
147    }
148}
149
150impl From<Matrix3D> for MatrixDecomposed2D {
151    /// Decompose a 2D matrix.
152    /// <https://drafts.csswg.org/css-transforms/#decomposing-a-2d-matrix>
153    fn from(matrix: Matrix3D) -> MatrixDecomposed2D {
154        let mut row0x = matrix.m11;
155        let mut row0y = matrix.m12;
156        let mut row1x = matrix.m21;
157        let mut row1y = matrix.m22;
158
159        let translate = Translate2D(matrix.m41, matrix.m42);
160        let mut scale = Scale2D(
161            (row0x * row0x + row0y * row0y).sqrt(),
162            (row1x * row1x + row1y * row1y).sqrt(),
163        );
164
165        // If determinant is negative, one axis was flipped.
166        let determinant = row0x * row1y - row0y * row1x;
167        if determinant < 0. {
168            if row0x < row1y {
169                scale.0 = -scale.0;
170            } else {
171                scale.1 = -scale.1;
172            }
173        }
174
175        // Renormalize matrix to remove scale.
176        if scale.0 != 0.0 {
177            row0x *= 1. / scale.0;
178            row0y *= 1. / scale.0;
179        }
180        if scale.1 != 0.0 {
181            row1x *= 1. / scale.1;
182            row1y *= 1. / scale.1;
183        }
184
185        // Compute rotation and renormalize matrix.
186        let mut angle = row0y.atan2(row0x);
187        if angle != 0.0 {
188            let sn = -row0y;
189            let cs = row0x;
190            let m11 = row0x;
191            let m12 = row0y;
192            let m21 = row1x;
193            let m22 = row1y;
194            row0x = cs * m11 + sn * m21;
195            row0y = cs * m12 + sn * m22;
196            row1x = -sn * m11 + cs * m21;
197            row1y = -sn * m12 + cs * m22;
198        }
199
200        let m = InnerMatrix2D {
201            m11: row0x,
202            m12: row0y,
203            m21: row1x,
204            m22: row1y,
205        };
206
207        // Convert into degrees because our rotation functions expect it.
208        angle = angle.to_degrees();
209        MatrixDecomposed2D {
210            translate: translate,
211            scale: scale,
212            angle: angle,
213            matrix: m,
214        }
215    }
216}
217
218impl From<MatrixDecomposed2D> for Matrix3D {
219    /// Recompose a 2D matrix.
220    /// <https://drafts.csswg.org/css-transforms/#recomposing-to-a-2d-matrix>
221    fn from(decomposed: MatrixDecomposed2D) -> Matrix3D {
222        let mut computed_matrix = Matrix3D::identity();
223        computed_matrix.m11 = decomposed.matrix.m11;
224        computed_matrix.m12 = decomposed.matrix.m12;
225        computed_matrix.m21 = decomposed.matrix.m21;
226        computed_matrix.m22 = decomposed.matrix.m22;
227
228        // Translate matrix.
229        computed_matrix.m41 = decomposed.translate.0;
230        computed_matrix.m42 = decomposed.translate.1;
231
232        // Rotate matrix.
233        let angle = decomposed.angle.to_radians();
234        let cos_angle = angle.cos();
235        let sin_angle = angle.sin();
236
237        let mut rotate_matrix = Matrix3D::identity();
238        rotate_matrix.m11 = cos_angle;
239        rotate_matrix.m12 = sin_angle;
240        rotate_matrix.m21 = -sin_angle;
241        rotate_matrix.m22 = cos_angle;
242
243        // Multiplication of computed_matrix and rotate_matrix
244        computed_matrix = rotate_matrix.multiply(&computed_matrix);
245
246        // Scale matrix.
247        computed_matrix.m11 *= decomposed.scale.0;
248        computed_matrix.m12 *= decomposed.scale.0;
249        computed_matrix.m21 *= decomposed.scale.1;
250        computed_matrix.m22 *= decomposed.scale.1;
251        computed_matrix
252    }
253}
254
255impl Animate for Matrix {
256    #[cfg(feature = "servo")]
257    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
258        let this = Matrix3D::from(*self);
259        let other = Matrix3D::from(*other);
260        let this = MatrixDecomposed2D::from(this);
261        let other = MatrixDecomposed2D::from(other);
262        Matrix3D::from(this.animate(&other, procedure)?).into_2d()
263    }
264
265    #[cfg(feature = "gecko")]
266    // Gecko doesn't exactly follow the spec here; we use a different procedure
267    // to match it
268    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
269        let this = Matrix3D::from(*self);
270        let other = Matrix3D::from(*other);
271        let from = decompose_2d_matrix(&this)?;
272        let to = decompose_2d_matrix(&other)?;
273        Matrix3D::from(from.animate(&to, procedure)?).into_2d()
274    }
275}
276
277/// A 3d translation.
278#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
279#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
280pub struct Translate3D(pub f32, pub f32, pub f32);
281
282/// A 3d scale function.
283#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
284#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
285pub struct Scale3D(pub f32, pub f32, pub f32);
286
287impl Scale3D {
288    /// Negate self.
289    fn negate(&mut self) {
290        self.0 *= -1.0;
291        self.1 *= -1.0;
292        self.2 *= -1.0;
293    }
294}
295
296impl Animate for Scale3D {
297    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
298        Ok(Scale3D(
299            animate_multiplicative_factor(self.0, other.0, procedure)?,
300            animate_multiplicative_factor(self.1, other.1, procedure)?,
301            animate_multiplicative_factor(self.2, other.2, procedure)?,
302        ))
303    }
304}
305
306/// A 3d skew function.
307#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
308#[derive(Animate, Clone, Copy, Debug)]
309pub struct Skew(f32, f32, f32);
310
311impl ComputeSquaredDistance for Skew {
312    // We have to use atan() to convert the skew factors into skew angles, so implement
313    // ComputeSquaredDistance manually.
314    #[inline]
315    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
316        Ok(self.0.atan().compute_squared_distance(&other.0.atan())?
317            + self.1.atan().compute_squared_distance(&other.1.atan())?
318            + self.2.atan().compute_squared_distance(&other.2.atan())?)
319    }
320}
321
322/// A 3d perspective transformation.
323#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
324#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
325pub struct Perspective(pub f32, pub f32, pub f32, pub f32);
326
327impl Animate for Perspective {
328    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
329        Ok(Perspective(
330            self.0.animate(&other.0, procedure)?,
331            self.1.animate(&other.1, procedure)?,
332            self.2.animate(&other.2, procedure)?,
333            animate_multiplicative_factor(self.3, other.3, procedure)?,
334        ))
335    }
336}
337
338/// A quaternion used to represent a rotation.
339#[derive(Clone, Copy, Debug)]
340#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
341pub struct Quaternion(f64, f64, f64, f64);
342
343impl Quaternion {
344    /// Return a quaternion from a unit direction vector and angle (unit: radian).
345    #[inline]
346    fn from_direction_and_angle(vector: &DirectionVector, angle: f64) -> Self {
347        debug_assert!(
348            (vector.length() - 1.).abs() < 0.0001,
349            "Only accept an unit direction vector to create a quaternion"
350        );
351
352        // Quaternions between the range [360, 720] will treated as rotations at the other
353        // direction: [-360, 0]. And quaternions between the range [720*k, 720*(k+1)] will be
354        // treated as rotations [0, 720]. So it does not make sense to use quaternions to rotate
355        // the element more than ±360deg. Therefore, we have to make sure its range is (-360, 360).
356        let half_angle = angle
357            .abs()
358            .rem_euclid(std::f64::consts::TAU)
359            .copysign(angle)
360            / 2.;
361
362        // Reference:
363        // https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
364        //
365        // if the direction axis is (x, y, z) = xi + yj + zk,
366        // and the angle is |theta|, this formula can be done using
367        // an extension of Euler's formula:
368        //   q = cos(theta/2) + (xi + yj + zk)(sin(theta/2))
369        //     = cos(theta/2) +
370        //       x*sin(theta/2)i + y*sin(theta/2)j + z*sin(theta/2)k
371        Quaternion(
372            vector.x as f64 * half_angle.sin(),
373            vector.y as f64 * half_angle.sin(),
374            vector.z as f64 * half_angle.sin(),
375            half_angle.cos(),
376        )
377    }
378
379    /// Calculate the dot product.
380    #[inline]
381    fn dot(&self, other: &Self) -> f64 {
382        self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3
383    }
384
385    /// Return the scaled quaternion by a factor.
386    #[inline]
387    fn scale(&self, factor: f64) -> Self {
388        Quaternion(
389            self.0 * factor,
390            self.1 * factor,
391            self.2 * factor,
392            self.3 * factor,
393        )
394    }
395}
396
397impl Add for Quaternion {
398    type Output = Self;
399
400    fn add(self, other: Self) -> Self {
401        Self(
402            self.0 + other.0,
403            self.1 + other.1,
404            self.2 + other.2,
405            self.3 + other.3,
406        )
407    }
408}
409
410impl Animate for Quaternion {
411    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
412        let (this_weight, other_weight) = procedure.weights();
413        debug_assert!(
414            // Doule EPSILON since both this_weight and other_weght have calculation errors
415            // which are approximately equal to EPSILON.
416            (this_weight + other_weight - 1.0f64).abs() <= f64::EPSILON * 2.0
417                || other_weight == 1.0f64
418                || other_weight == 0.0f64,
419            "animate should only be used for interpolating or accumulating transforms"
420        );
421
422        // We take a specialized code path for accumulation (where other_weight
423        // is 1).
424        if let Procedure::Accumulate { .. } = procedure {
425            debug_assert_eq!(other_weight, 1.0);
426            if this_weight == 0.0 {
427                return Ok(*other);
428            }
429
430            let clamped_w = self.3.min(1.0).max(-1.0);
431
432            // Determine the scale factor.
433            let mut theta = clamped_w.acos();
434            let mut scale = if theta == 0.0 { 0.0 } else { 1.0 / theta.sin() };
435            theta *= this_weight;
436            scale *= theta.sin();
437
438            // Scale the self matrix by this_weight.
439            let mut scaled_self = *self;
440            scaled_self.0 *= scale;
441            scaled_self.1 *= scale;
442            scaled_self.2 *= scale;
443            scaled_self.3 = theta.cos();
444
445            // Multiply scaled-self by other.
446            let a = &scaled_self;
447            let b = other;
448            return Ok(Quaternion(
449                a.3 * b.0 + a.0 * b.3 + a.1 * b.2 - a.2 * b.1,
450                a.3 * b.1 - a.0 * b.2 + a.1 * b.3 + a.2 * b.0,
451                a.3 * b.2 + a.0 * b.1 - a.1 * b.0 + a.2 * b.3,
452                a.3 * b.3 - a.0 * b.0 - a.1 * b.1 - a.2 * b.2,
453            ));
454        }
455
456        // https://drafts.csswg.org/css-transforms-2/#interpolation-of-decomposed-3d-matrix-values
457        //
458        // Dot product, clamped between -1 and 1.
459        let cos_half_theta =
460            (self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3)
461                .min(1.0)
462                .max(-1.0);
463
464        if cos_half_theta.abs() == 1.0 {
465            return Ok(*self);
466        }
467
468        let half_theta = cos_half_theta.acos();
469        let sin_half_theta = (1.0 - cos_half_theta * cos_half_theta).sqrt();
470
471        let right_weight = (other_weight * half_theta).sin() / sin_half_theta;
472        // The spec would like to use
473        // "(other_weight * half_theta).cos() - cos_half_theta * right_weight". However, this
474        // formula may produce some precision issues of floating-point number calculation, e.g.
475        // when the progress is 100% (i.e. |other_weight| is 1), the |left_weight| may not be
476        // perfectly equal to 0. It could be something like -2.22e-16, which is approximately equal
477        // to zero, in the test. And after we recompose the Matrix3D, these approximated zeros
478        // make us failed to treat this Matrix3D as a Matrix2D, when serializating it.
479        //
480        // Therefore, we use another formula to calculate |left_weight| here. Blink and WebKit also
481        // use this formula, which is defined in:
482        // https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/index.htm
483        // https://github.com/w3c/csswg-drafts/issues/9338
484        let left_weight = (this_weight * half_theta).sin() / sin_half_theta;
485
486        Ok(self.scale(left_weight) + other.scale(right_weight))
487    }
488}
489
490impl ComputeSquaredDistance for Quaternion {
491    #[inline]
492    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
493        // Use quaternion vectors to get the angle difference. Both q1 and q2 are unit vectors,
494        // so we can get their angle difference by:
495        // cos(theta/2) = (q1 dot q2) / (|q1| * |q2|) = q1 dot q2.
496        let distance = self.dot(other).max(-1.0).min(1.0).acos() * 2.0;
497        Ok(SquaredDistance::from_sqrt(distance))
498    }
499}
500
501/// A decomposed 3d matrix.
502#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
503#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
504pub struct MatrixDecomposed3D {
505    /// A translation function.
506    pub translate: Translate3D,
507    /// A scale function.
508    pub scale: Scale3D,
509    /// The skew component of the transformation.
510    pub skew: Skew,
511    /// The perspective component of the transformation.
512    pub perspective: Perspective,
513    /// The quaternion used to represent the rotation.
514    pub quaternion: Quaternion,
515}
516
517impl From<MatrixDecomposed3D> for Matrix3D {
518    /// Recompose a 3D matrix.
519    /// <https://drafts.csswg.org/css-transforms/#recomposing-to-a-3d-matrix>
520    fn from(decomposed: MatrixDecomposed3D) -> Matrix3D {
521        let mut matrix = Matrix3D::identity();
522
523        // Apply perspective
524        matrix.set_perspective(&decomposed.perspective);
525
526        // Apply translation
527        matrix.apply_translate(&decomposed.translate);
528
529        // Apply rotation
530        {
531            let x = decomposed.quaternion.0;
532            let y = decomposed.quaternion.1;
533            let z = decomposed.quaternion.2;
534            let w = decomposed.quaternion.3;
535
536            // Construct a composite rotation matrix from the quaternion values
537            // rotationMatrix is a identity 4x4 matrix initially
538            let mut rotation_matrix = Matrix3D::identity();
539            rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z) as f32;
540            rotation_matrix.m12 = 2.0 * (x * y + z * w) as f32;
541            rotation_matrix.m13 = 2.0 * (x * z - y * w) as f32;
542            rotation_matrix.m21 = 2.0 * (x * y - z * w) as f32;
543            rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z) as f32;
544            rotation_matrix.m23 = 2.0 * (y * z + x * w) as f32;
545            rotation_matrix.m31 = 2.0 * (x * z + y * w) as f32;
546            rotation_matrix.m32 = 2.0 * (y * z - x * w) as f32;
547            rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y) as f32;
548
549            matrix = rotation_matrix.multiply(&matrix);
550        }
551
552        // Apply skew
553        {
554            let mut temp = Matrix3D::identity();
555            if decomposed.skew.2 != 0.0 {
556                temp.m32 = decomposed.skew.2;
557                matrix = temp.multiply(&matrix);
558                temp.m32 = 0.0;
559            }
560
561            if decomposed.skew.1 != 0.0 {
562                temp.m31 = decomposed.skew.1;
563                matrix = temp.multiply(&matrix);
564                temp.m31 = 0.0;
565            }
566
567            if decomposed.skew.0 != 0.0 {
568                temp.m21 = decomposed.skew.0;
569                matrix = temp.multiply(&matrix);
570            }
571        }
572
573        // Apply scale
574        matrix.apply_scale(&decomposed.scale);
575
576        matrix
577    }
578}
579
580/// Decompose a 3D matrix.
581/// https://drafts.csswg.org/css-transforms-2/#decomposing-a-3d-matrix
582/// http://www.realtimerendering.com/resources/GraphicsGems/gemsii/unmatrix.c
583fn decompose_3d_matrix(mut matrix: Matrix3D) -> Result<MatrixDecomposed3D, ()> {
584    // Combine 2 point.
585    let combine = |a: [f32; 3], b: [f32; 3], ascl: f32, bscl: f32| {
586        [
587            (ascl * a[0]) + (bscl * b[0]),
588            (ascl * a[1]) + (bscl * b[1]),
589            (ascl * a[2]) + (bscl * b[2]),
590        ]
591    };
592    // Dot product.
593    let dot = |a: [f32; 3], b: [f32; 3]| a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
594    // Cross product.
595    let cross = |row1: [f32; 3], row2: [f32; 3]| {
596        [
597            row1[1] * row2[2] - row1[2] * row2[1],
598            row1[2] * row2[0] - row1[0] * row2[2],
599            row1[0] * row2[1] - row1[1] * row2[0],
600        ]
601    };
602
603    if matrix.m44 == 0.0 {
604        return Err(());
605    }
606
607    let scaling_factor = matrix.m44;
608
609    // Normalize the matrix.
610    matrix.scale_by_factor(1.0 / scaling_factor);
611
612    // perspective_matrix is used to solve for perspective, but it also provides
613    // an easy way to test for singularity of the upper 3x3 component.
614    let mut perspective_matrix = matrix;
615
616    perspective_matrix.m14 = 0.0;
617    perspective_matrix.m24 = 0.0;
618    perspective_matrix.m34 = 0.0;
619    perspective_matrix.m44 = 1.0;
620
621    if perspective_matrix.determinant() == 0.0 {
622        return Err(());
623    }
624
625    // First, isolate perspective.
626    let perspective = if matrix.m14 != 0.0 || matrix.m24 != 0.0 || matrix.m34 != 0.0 {
627        let right_hand_side: [f32; 4] = [matrix.m14, matrix.m24, matrix.m34, matrix.m44];
628
629        perspective_matrix = perspective_matrix.inverse().unwrap().transpose();
630        let perspective = perspective_matrix.pre_mul_point4(&right_hand_side);
631        // NOTE(emilio): Even though the reference algorithm clears the
632        // fourth column here (matrix.m14..matrix.m44), they're not used below
633        // so it's not really needed.
634        Perspective(
635            perspective[0],
636            perspective[1],
637            perspective[2],
638            perspective[3],
639        )
640    } else {
641        Perspective(0.0, 0.0, 0.0, 1.0)
642    };
643
644    // Next take care of translation (easy).
645    let translate = Translate3D(matrix.m41, matrix.m42, matrix.m43);
646
647    // Now get scale and shear. 'row' is a 3 element array of 3 component vectors
648    let mut row = matrix.get_matrix_3x3_part();
649
650    // Compute X scale factor and normalize first row.
651    let row0len = (row[0][0] * row[0][0] + row[0][1] * row[0][1] + row[0][2] * row[0][2]).sqrt();
652    let mut scale = Scale3D(row0len, 0.0, 0.0);
653    row[0] = [
654        row[0][0] / row0len,
655        row[0][1] / row0len,
656        row[0][2] / row0len,
657    ];
658
659    // Compute XY shear factor and make 2nd row orthogonal to 1st.
660    let mut skew = Skew(dot(row[0], row[1]), 0.0, 0.0);
661    row[1] = combine(row[1], row[0], 1.0, -skew.0);
662
663    // Now, compute Y scale and normalize 2nd row.
664    let row1len = (row[1][0] * row[1][0] + row[1][1] * row[1][1] + row[1][2] * row[1][2]).sqrt();
665    scale.1 = row1len;
666    row[1] = [
667        row[1][0] / row1len,
668        row[1][1] / row1len,
669        row[1][2] / row1len,
670    ];
671    skew.0 /= scale.1;
672
673    // Compute XZ and YZ shears, orthogonalize 3rd row
674    skew.1 = dot(row[0], row[2]);
675    row[2] = combine(row[2], row[0], 1.0, -skew.1);
676    skew.2 = dot(row[1], row[2]);
677    row[2] = combine(row[2], row[1], 1.0, -skew.2);
678
679    // Next, get Z scale and normalize 3rd row.
680    let row2len = (row[2][0] * row[2][0] + row[2][1] * row[2][1] + row[2][2] * row[2][2]).sqrt();
681    scale.2 = row2len;
682    row[2] = [
683        row[2][0] / row2len,
684        row[2][1] / row2len,
685        row[2][2] / row2len,
686    ];
687    skew.1 /= scale.2;
688    skew.2 /= scale.2;
689
690    // At this point, the matrix (in rows) is orthonormal.
691    // Check for a coordinate system flip.  If the determinant
692    // is -1, then negate the matrix and the scaling factors.
693    if dot(row[0], cross(row[1], row[2])) < 0.0 {
694        scale.negate();
695        for i in 0..3 {
696            row[i][0] *= -1.0;
697            row[i][1] *= -1.0;
698            row[i][2] *= -1.0;
699        }
700    }
701
702    // Now, get the rotations out.
703    let mut quaternion = Quaternion(
704        0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
705        0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
706        0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0) as f64).sqrt(),
707        0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0) as f64).sqrt(),
708    );
709
710    if row[2][1] > row[1][2] {
711        quaternion.0 = -quaternion.0
712    }
713    if row[0][2] > row[2][0] {
714        quaternion.1 = -quaternion.1
715    }
716    if row[1][0] > row[0][1] {
717        quaternion.2 = -quaternion.2
718    }
719
720    Ok(MatrixDecomposed3D {
721        translate,
722        scale,
723        skew,
724        perspective,
725        quaternion,
726    })
727}
728
729/**
730 * The relevant section of the transitions specification:
731 * https://drafts.csswg.org/web-animations-1/#animation-types
732 * http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types-
733 * defers all of the details to the 2-D and 3-D transforms specifications.
734 * For the 2-D transforms specification (all that's relevant for us, right
735 * now), the relevant section is:
736 * https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
737 * This, in turn, refers to the unmatrix program in Graphics Gems,
738 * available from http://graphicsgems.org/ , and in
739 * particular as the file GraphicsGems/gemsii/unmatrix.c
740 * in http://graphicsgems.org/AllGems.tar.gz
741 *
742 * The unmatrix reference is for general 3-D transform matrices (any of the
743 * 16 components can have any value).
744 *
745 * For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant:
746 *
747 * [ A C E ]
748 * [ B D F ]
749 * [ 0 0 1 ]
750 *
751 * For that case, I believe the algorithm in unmatrix reduces to:
752 *
753 *  (1) If A * D - B * C == 0, the matrix is singular.  Fail.
754 *
755 *  (2) Set translation components (Tx and Ty) to the translation parts of
756 *      the matrix (E and F) and then ignore them for the rest of the time.
757 *      (For us, E and F each actually consist of three constants:  a
758 *      length, a multiplier for the width, and a multiplier for the
759 *      height.  This actually requires its own decomposition, but I'll
760 *      keep that separate.)
761 *
762 *  (3) Let the X scale (Sx) be sqrt(A^2 + B^2).  Then divide both A and B
763 *      by it.
764 *
765 *  (4) Let the XY shear (K) be A * C + B * D.  From C, subtract A times
766 *      the XY shear.  From D, subtract B times the XY shear.
767 *
768 *  (5) Let the Y scale (Sy) be sqrt(C^2 + D^2).  Divide C, D, and the XY
769 *      shear (K) by it.
770 *
771 *  (6) At this point, A * D - B * C is either 1 or -1.  If it is -1,
772 *      negate the XY shear (K), the X scale (Sx), and A, B, C, and D.
773 *      (Alternatively, we could negate the XY shear (K) and the Y scale
774 *      (Sy).)
775 *
776 *  (7) Let the rotation be R = atan2(B, A).
777 *
778 * Then the resulting decomposed transformation is:
779 *
780 *   translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy)
781 *
782 * An interesting result of this is that all of the simple transform
783 * functions (i.e., all functions other than matrix()), in isolation,
784 * decompose back to themselves except for:
785 *   'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes
786 *   to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the
787 *   alternate sign possibilities that would get fixed in step 6):
788 *     In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
789 * sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
790 * sin(φ). In step 4, the XY shear is sin(φ). Thus, after step 4, C =
791 * -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ). Thus, in step 5, the Y scale is
792 * sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ). Thus, after step 5, C = -sin(φ), D
793 * = cos(φ), and the XY shear is tan(φ). Thus, in step 6, A * D - B * C =
794 * cos²(φ) + sin²(φ) = 1. In step 7, the rotation is thus φ.
795 *
796 *   skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes
797 *   to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring
798 *   the alternate sign possibilities that would get fixed in step 6):
799 *     In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
800 * sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
801 * sin(φ). In step 4, the XY shear is cos(φ)tan(θ) + sin(φ). Thus, after step 4,
802 *     C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) - cos(φ)sin(φ)
803 *     D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) - sin(φ)cos(φ)tan(θ)
804 *     Thus, in step 5, the Y scale is sqrt(C² + D²) =
805 *     sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) -
806 *          2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) +
807 *          (sin²(φ)cos²(φ) + cos⁴(φ))) =
808 *     sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) =
809 *     cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so
810 *     we avoid flipping in step 6).
811 *     After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is
812 *     (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) =
813 *     (dividing both numerator and denominator by cos(φ))
814 *     (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ).
815 *     (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .)
816 *     Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1.
817 *     In step 7, the rotation is thus φ.
818 *
819 *     To check this result, we can multiply things back together:
820 *
821 *     [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ)    0   ]
822 *     [ sin(φ)  cos(φ) ] [ 0      1     ] [   0    cos(φ) ]
823 *
824 *     [ cos(φ)      cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ)    0   ]
825 *     [ sin(φ)      sin(φ)tan(θ + φ) + cos(φ) ] [   0    cos(φ) ]
826 *
827 *     but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)),
828 *     cos(φ)tan(θ + φ) - sin(φ)
829 *      = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ)
830 *      = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ)
831 *      = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ)
832 *      = tan(θ) (cos(φ) + sin(φ)tan(φ))
833 *      = tan(θ) sec(φ) (cos²(φ) + sin²(φ))
834 *      = tan(θ) sec(φ)
835 *     and
836 *     sin(φ)tan(θ + φ) + cos(φ)
837 *      = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ)
838 *      = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ)
839 *      = sec(φ) (sin²(φ) + cos²(φ))
840 *      = sec(φ)
841 *     so the above is:
842 *     [ cos(φ)  tan(θ) sec(φ) ] [ sec(φ)    0   ]
843 *     [ sin(φ)     sec(φ)     ] [   0    cos(φ) ]
844 *
845 *     [    1   tan(θ) ]
846 *     [ tan(φ)    1   ]
847 */
848
849/// Decompose a 2D matrix for Gecko. This implements the above decomposition algorithm.
850#[cfg(feature = "gecko")]
851fn decompose_2d_matrix(matrix: &Matrix3D) -> Result<MatrixDecomposed3D, ()> {
852    // The index is column-major, so the equivalent transform matrix is:
853    // | m11 m21  0 m41 |  =>  | m11 m21 | and translate(m41, m42)
854    // | m12 m22  0 m42 |      | m12 m22 |
855    // |   0   0  1   0 |
856    // |   0   0  0   1 |
857    let (mut m11, mut m12) = (matrix.m11, matrix.m12);
858    let (mut m21, mut m22) = (matrix.m21, matrix.m22);
859    // Check if this is a singular matrix.
860    if m11 * m22 == m12 * m21 {
861        return Err(());
862    }
863
864    let mut scale_x = (m11 * m11 + m12 * m12).sqrt();
865    m11 /= scale_x;
866    m12 /= scale_x;
867
868    let mut shear_xy = m11 * m21 + m12 * m22;
869    m21 -= m11 * shear_xy;
870    m22 -= m12 * shear_xy;
871
872    let scale_y = (m21 * m21 + m22 * m22).sqrt();
873    m21 /= scale_y;
874    m22 /= scale_y;
875    shear_xy /= scale_y;
876
877    let determinant = m11 * m22 - m12 * m21;
878    // Determinant should now be 1 or -1.
879    if 0.99 > determinant.abs() || determinant.abs() > 1.01 {
880        return Err(());
881    }
882
883    if determinant < 0. {
884        m11 = -m11;
885        m12 = -m12;
886        shear_xy = -shear_xy;
887        scale_x = -scale_x;
888    }
889
890    Ok(MatrixDecomposed3D {
891        translate: Translate3D(matrix.m41, matrix.m42, 0.),
892        scale: Scale3D(scale_x, scale_y, 1.),
893        skew: Skew(shear_xy, 0., 0.),
894        perspective: Perspective(0., 0., 0., 1.),
895        quaternion: Quaternion::from_direction_and_angle(
896            &DirectionVector::new(0., 0., 1.),
897            m12.atan2(m11) as f64,
898        ),
899    })
900}
901
902impl Animate for Matrix3D {
903    #[cfg(feature = "servo")]
904    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
905        if self.is_3d() || other.is_3d() {
906            let decomposed_from = decompose_3d_matrix(*self);
907            let decomposed_to = decompose_3d_matrix(*other);
908            match (decomposed_from, decomposed_to) {
909                (Ok(this), Ok(other)) => Ok(Matrix3D::from(this.animate(&other, procedure)?)),
910                // Matrices can be undecomposable due to couple reasons, e.g.,
911                // non-invertible matrices. In this case, we should report Err
912                // here, and let the caller do the fallback procedure.
913                _ => Err(()),
914            }
915        } else {
916            let this = MatrixDecomposed2D::from(*self);
917            let other = MatrixDecomposed2D::from(*other);
918            Ok(Matrix3D::from(this.animate(&other, procedure)?))
919        }
920    }
921
922    #[cfg(feature = "gecko")]
923    // Gecko doesn't exactly follow the spec here; we use a different procedure
924    // to match it
925    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
926        let (from, to) = if self.is_3d() || other.is_3d() {
927            (decompose_3d_matrix(*self)?, decompose_3d_matrix(*other)?)
928        } else {
929            (decompose_2d_matrix(self)?, decompose_2d_matrix(other)?)
930        };
931        // Matrices can be undecomposable due to couple reasons, e.g.,
932        // non-invertible matrices. In this case, we should report Err here,
933        // and let the caller do the fallback procedure.
934        Ok(Matrix3D::from(from.animate(&to, procedure)?))
935    }
936}
937
938impl ComputeSquaredDistance for Matrix3D {
939    #[inline]
940    #[cfg(feature = "servo")]
941    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
942        if self.is_3d() || other.is_3d() {
943            let from = decompose_3d_matrix(*self)?;
944            let to = decompose_3d_matrix(*other)?;
945            from.compute_squared_distance(&to)
946        } else {
947            let from = MatrixDecomposed2D::from(*self);
948            let to = MatrixDecomposed2D::from(*other);
949            from.compute_squared_distance(&to)
950        }
951    }
952
953    #[inline]
954    #[cfg(feature = "gecko")]
955    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
956        let (from, to) = if self.is_3d() || other.is_3d() {
957            (decompose_3d_matrix(*self)?, decompose_3d_matrix(*other)?)
958        } else {
959            (decompose_2d_matrix(self)?, decompose_2d_matrix(other)?)
960        };
961        from.compute_squared_distance(&to)
962    }
963}
964
965// ------------------------------------
966// Animation for Transform list.
967// ------------------------------------
968fn is_matched_operation(
969    first: &ComputedTransformOperation,
970    second: &ComputedTransformOperation,
971) -> bool {
972    match (first, second) {
973        (&TransformOperation::Matrix(..), &TransformOperation::Matrix(..))
974        | (&TransformOperation::Matrix3D(..), &TransformOperation::Matrix3D(..))
975        | (&TransformOperation::Skew(..), &TransformOperation::Skew(..))
976        | (&TransformOperation::SkewX(..), &TransformOperation::SkewX(..))
977        | (&TransformOperation::SkewY(..), &TransformOperation::SkewY(..))
978        | (&TransformOperation::Rotate(..), &TransformOperation::Rotate(..))
979        | (&TransformOperation::Rotate3D(..), &TransformOperation::Rotate3D(..))
980        | (&TransformOperation::RotateX(..), &TransformOperation::RotateX(..))
981        | (&TransformOperation::RotateY(..), &TransformOperation::RotateY(..))
982        | (&TransformOperation::RotateZ(..), &TransformOperation::RotateZ(..))
983        | (&TransformOperation::Perspective(..), &TransformOperation::Perspective(..)) => true,
984        // Match functions that have the same primitive transform function
985        (a, b) if a.is_translate() && b.is_translate() => true,
986        (a, b) if a.is_scale() && b.is_scale() => true,
987        (a, b) if a.is_rotate() && b.is_rotate() => true,
988        // InterpolateMatrix and AccumulateMatrix are for mismatched transforms
989        _ => false,
990    }
991}
992
993/// <https://drafts.csswg.org/css-transforms/#interpolation-of-transforms>
994impl Animate for ComputedTransform {
995    #[inline]
996    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
997        use std::borrow::Cow;
998
999        // Addition for transforms simply means appending to the list of
1000        // transform functions. This is different to how we handle the other
1001        // animation procedures so we treat it separately here rather than
1002        // handling it in TransformOperation.
1003        if procedure == Procedure::Add {
1004            let result = self.0.iter().chain(&*other.0).cloned().collect();
1005            return Ok(Transform(result));
1006        }
1007
1008        let this = Cow::Borrowed(&self.0);
1009        let other = Cow::Borrowed(&other.0);
1010
1011        // Interpolate the common prefix
1012        let mut result = this
1013            .iter()
1014            .zip(other.iter())
1015            .take_while(|(this, other)| is_matched_operation(this, other))
1016            .map(|(this, other)| this.animate(other, procedure))
1017            .collect::<Result<Vec<_>, _>>()?;
1018
1019        // Deal with the remainders
1020        let this_remainder = if this.len() > result.len() {
1021            Some(&this[result.len()..])
1022        } else {
1023            None
1024        };
1025        let other_remainder = if other.len() > result.len() {
1026            Some(&other[result.len()..])
1027        } else {
1028            None
1029        };
1030
1031        match (this_remainder, other_remainder) {
1032            // If there is a remainder from *both* lists we must have had mismatched functions.
1033            // => Add the remainders to a suitable ___Matrix function.
1034            (Some(this_remainder), Some(other_remainder)) => {
1035                result.push(TransformOperation::animate_mismatched_transforms(
1036                    this_remainder,
1037                    other_remainder,
1038                    procedure,
1039                )?);
1040            },
1041            // If there is a remainder from just one list, then one list must be shorter but
1042            // completely match the type of the corresponding functions in the longer list.
1043            // => Interpolate the remainder with identity transforms.
1044            (Some(remainder), None) | (None, Some(remainder)) => {
1045                let fill_right = this_remainder.is_some();
1046                result.append(
1047                    &mut remainder
1048                        .iter()
1049                        .map(|transform| {
1050                            let identity = transform.to_animated_zero().unwrap();
1051
1052                            match transform {
1053                                TransformOperation::AccumulateMatrix { .. }
1054                                | TransformOperation::InterpolateMatrix { .. } => {
1055                                    let (from, to) = if fill_right {
1056                                        (transform, &identity)
1057                                    } else {
1058                                        (&identity, transform)
1059                                    };
1060
1061                                    TransformOperation::animate_mismatched_transforms(
1062                                        &[from.clone()],
1063                                        &[to.clone()],
1064                                        procedure,
1065                                    )
1066                                },
1067                                _ => {
1068                                    let (lhs, rhs) = if fill_right {
1069                                        (transform, &identity)
1070                                    } else {
1071                                        (&identity, transform)
1072                                    };
1073                                    lhs.animate(rhs, procedure)
1074                                },
1075                            }
1076                        })
1077                        .collect::<Result<Vec<_>, _>>()?,
1078                );
1079            },
1080            (None, None) => {},
1081        }
1082
1083        Ok(Transform(result.into()))
1084    }
1085}
1086
1087impl ComputeSquaredDistance for ComputedTransform {
1088    #[inline]
1089    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
1090        let squared_dist = super::lists::with_zero::squared_distance(&self.0, &other.0);
1091
1092        // Roll back to matrix interpolation if there is any Err(()) in the
1093        // transform lists, such as mismatched transform functions.
1094        //
1095        // FIXME: Using a zero size here seems a bit sketchy but matches the
1096        // previous behavior.
1097        if squared_dist.is_err() {
1098            let rect = euclid::Rect::zero();
1099            let matrix1: Matrix3D = self.to_transform_3d_matrix(Some(&rect))?.0.into();
1100            let matrix2: Matrix3D = other.to_transform_3d_matrix(Some(&rect))?.0.into();
1101            return matrix1.compute_squared_distance(&matrix2);
1102        }
1103
1104        squared_dist
1105    }
1106}
1107
1108/// <http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms>
1109impl Animate for ComputedTransformOperation {
1110    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
1111        match (self, other) {
1112            (&TransformOperation::Matrix3D(ref this), &TransformOperation::Matrix3D(ref other)) => {
1113                Ok(TransformOperation::Matrix3D(
1114                    this.animate(other, procedure)?,
1115                ))
1116            },
1117            (&TransformOperation::Matrix(ref this), &TransformOperation::Matrix(ref other)) => {
1118                Ok(TransformOperation::Matrix(this.animate(other, procedure)?))
1119            },
1120            (
1121                &TransformOperation::Skew(ref fx, ref fy),
1122                &TransformOperation::Skew(ref tx, ref ty),
1123            ) => Ok(TransformOperation::Skew(
1124                fx.animate(tx, procedure)?,
1125                fy.animate(ty, procedure)?,
1126            )),
1127            (&TransformOperation::SkewX(ref f), &TransformOperation::SkewX(ref t)) => {
1128                Ok(TransformOperation::SkewX(f.animate(t, procedure)?))
1129            },
1130            (&TransformOperation::SkewY(ref f), &TransformOperation::SkewY(ref t)) => {
1131                Ok(TransformOperation::SkewY(f.animate(t, procedure)?))
1132            },
1133            (
1134                &TransformOperation::Translate3D(ref fx, ref fy, ref fz),
1135                &TransformOperation::Translate3D(ref tx, ref ty, ref tz),
1136            ) => Ok(TransformOperation::Translate3D(
1137                fx.animate(tx, procedure)?,
1138                fy.animate(ty, procedure)?,
1139                fz.animate(tz, procedure)?,
1140            )),
1141            (
1142                &TransformOperation::Translate(ref fx, ref fy),
1143                &TransformOperation::Translate(ref tx, ref ty),
1144            ) => Ok(TransformOperation::Translate(
1145                fx.animate(tx, procedure)?,
1146                fy.animate(ty, procedure)?,
1147            )),
1148            (&TransformOperation::TranslateX(ref f), &TransformOperation::TranslateX(ref t)) => {
1149                Ok(TransformOperation::TranslateX(f.animate(t, procedure)?))
1150            },
1151            (&TransformOperation::TranslateY(ref f), &TransformOperation::TranslateY(ref t)) => {
1152                Ok(TransformOperation::TranslateY(f.animate(t, procedure)?))
1153            },
1154            (&TransformOperation::TranslateZ(ref f), &TransformOperation::TranslateZ(ref t)) => {
1155                Ok(TransformOperation::TranslateZ(f.animate(t, procedure)?))
1156            },
1157            (
1158                &TransformOperation::Scale3D(ref fx, ref fy, ref fz),
1159                &TransformOperation::Scale3D(ref tx, ref ty, ref tz),
1160            ) => Ok(TransformOperation::Scale3D(
1161                animate_multiplicative_factor(*fx, *tx, procedure)?,
1162                animate_multiplicative_factor(*fy, *ty, procedure)?,
1163                animate_multiplicative_factor(*fz, *tz, procedure)?,
1164            )),
1165            (&TransformOperation::ScaleX(ref f), &TransformOperation::ScaleX(ref t)) => Ok(
1166                TransformOperation::ScaleX(animate_multiplicative_factor(*f, *t, procedure)?),
1167            ),
1168            (&TransformOperation::ScaleY(ref f), &TransformOperation::ScaleY(ref t)) => Ok(
1169                TransformOperation::ScaleY(animate_multiplicative_factor(*f, *t, procedure)?),
1170            ),
1171            (&TransformOperation::ScaleZ(ref f), &TransformOperation::ScaleZ(ref t)) => Ok(
1172                TransformOperation::ScaleZ(animate_multiplicative_factor(*f, *t, procedure)?),
1173            ),
1174            (
1175                &TransformOperation::Scale(ref fx, ref fy),
1176                &TransformOperation::Scale(ref tx, ref ty),
1177            ) => Ok(TransformOperation::Scale(
1178                animate_multiplicative_factor(*fx, *tx, procedure)?,
1179                animate_multiplicative_factor(*fy, *ty, procedure)?,
1180            )),
1181            (
1182                &TransformOperation::Rotate3D(fx, fy, fz, fa),
1183                &TransformOperation::Rotate3D(tx, ty, tz, ta),
1184            ) => {
1185                let animated = Rotate::Rotate3D(fx, fy, fz, fa)
1186                    .animate(&Rotate::Rotate3D(tx, ty, tz, ta), procedure)?;
1187                let (fx, fy, fz, fa) = ComputedRotate::resolve(&animated);
1188                Ok(TransformOperation::Rotate3D(fx, fy, fz, fa))
1189            },
1190            (&TransformOperation::RotateX(fa), &TransformOperation::RotateX(ta)) => {
1191                Ok(TransformOperation::RotateX(fa.animate(&ta, procedure)?))
1192            },
1193            (&TransformOperation::RotateY(fa), &TransformOperation::RotateY(ta)) => {
1194                Ok(TransformOperation::RotateY(fa.animate(&ta, procedure)?))
1195            },
1196            (&TransformOperation::RotateZ(fa), &TransformOperation::RotateZ(ta)) => {
1197                Ok(TransformOperation::RotateZ(fa.animate(&ta, procedure)?))
1198            },
1199            (&TransformOperation::Rotate(fa), &TransformOperation::Rotate(ta)) => {
1200                Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
1201            },
1202            (&TransformOperation::Rotate(fa), &TransformOperation::RotateZ(ta)) => {
1203                Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
1204            },
1205            (&TransformOperation::RotateZ(fa), &TransformOperation::Rotate(ta)) => {
1206                Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
1207            },
1208            (
1209                &TransformOperation::Perspective(ref fd),
1210                &TransformOperation::Perspective(ref td),
1211            ) => {
1212                use crate::values::computed::CSSPixelLength;
1213                use crate::values::generics::transform::create_perspective_matrix;
1214
1215                // From https://drafts.csswg.org/css-transforms-2/#interpolation-of-transform-functions:
1216                //
1217                //    The transform functions matrix(), matrix3d() and
1218                //    perspective() get converted into 4x4 matrices first and
1219                //    interpolated as defined in section Interpolation of
1220                //    Matrices afterwards.
1221                //
1222                let from = create_perspective_matrix(fd.infinity_or(|l| l.px()));
1223                let to = create_perspective_matrix(td.infinity_or(|l| l.px()));
1224
1225                let interpolated = Matrix3D::from(from).animate(&Matrix3D::from(to), procedure)?;
1226
1227                let decomposed = decompose_3d_matrix(interpolated)?;
1228                let perspective_z = decomposed.perspective.2;
1229                // Clamp results outside of the -1 to 0 range so that we get perspective
1230                // function values between 1 and infinity.
1231                let used_value = if perspective_z >= 0. {
1232                    transform::PerspectiveFunction::None
1233                } else {
1234                    transform::PerspectiveFunction::Length(CSSPixelLength::new(
1235                        if perspective_z <= -1. {
1236                            1.
1237                        } else {
1238                            -1. / perspective_z
1239                        },
1240                    ))
1241                };
1242                Ok(TransformOperation::Perspective(used_value))
1243            },
1244            _ if self.is_translate() && other.is_translate() => self
1245                .to_translate_3d()
1246                .animate(&other.to_translate_3d(), procedure),
1247            _ if self.is_scale() && other.is_scale() => {
1248                self.to_scale_3d().animate(&other.to_scale_3d(), procedure)
1249            },
1250            _ if self.is_rotate() && other.is_rotate() => self
1251                .to_rotate_3d()
1252                .animate(&other.to_rotate_3d(), procedure),
1253            _ => Err(()),
1254        }
1255    }
1256}
1257
1258impl ComputedTransformOperation {
1259    /// If there are no size dependencies, we try to animate in-place, to avoid
1260    /// creating deeply nested Interpolate* operations.
1261    fn try_animate_mismatched_transforms_in_place(
1262        left: &[Self],
1263        right: &[Self],
1264        procedure: Procedure,
1265    ) -> Result<Self, ()> {
1266        let (left, _left_3d) = Transform::components_to_transform_3d_matrix(left, None)?;
1267        let (right, _right_3d) = Transform::components_to_transform_3d_matrix(right, None)?;
1268        Ok(Self::Matrix3D(
1269            Matrix3D::from(left).animate(&Matrix3D::from(right), procedure)?,
1270        ))
1271    }
1272
1273    fn animate_mismatched_transforms(
1274        left: &[Self],
1275        right: &[Self],
1276        procedure: Procedure,
1277    ) -> Result<Self, ()> {
1278        if let Ok(op) = Self::try_animate_mismatched_transforms_in_place(left, right, procedure) {
1279            return Ok(op);
1280        }
1281        let from_list = Transform(left.to_vec().into());
1282        let to_list = Transform(right.to_vec().into());
1283        Ok(match procedure {
1284            Procedure::Add => {
1285                debug_assert!(false, "Addition should've been handled earlier");
1286                return Err(());
1287            },
1288            Procedure::Interpolate { progress } => Self::InterpolateMatrix {
1289                from_list,
1290                to_list,
1291                progress: Percentage(progress as f32),
1292            },
1293            Procedure::Accumulate { count } => Self::AccumulateMatrix {
1294                from_list,
1295                to_list,
1296                count: cmp::min(count, i32::max_value() as u64) as i32,
1297            },
1298        })
1299    }
1300}
1301
1302// This might not be the most useful definition of distance. It might be better, for example,
1303// to trace the distance travelled by a point as its transform is interpolated between the two
1304// lists. That, however, proves to be quite complicated so we take a simple approach for now.
1305// See https://bugzilla.mozilla.org/show_bug.cgi?id=1318591#c0.
1306impl ComputeSquaredDistance for ComputedTransformOperation {
1307    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
1308        match (self, other) {
1309            (&TransformOperation::Matrix3D(ref this), &TransformOperation::Matrix3D(ref other)) => {
1310                this.compute_squared_distance(other)
1311            },
1312            (&TransformOperation::Matrix(ref this), &TransformOperation::Matrix(ref other)) => {
1313                let this: Matrix3D = (*this).into();
1314                let other: Matrix3D = (*other).into();
1315                this.compute_squared_distance(&other)
1316            },
1317            (
1318                &TransformOperation::Skew(ref fx, ref fy),
1319                &TransformOperation::Skew(ref tx, ref ty),
1320            ) => Ok(fx.compute_squared_distance(&tx)? + fy.compute_squared_distance(&ty)?),
1321            (&TransformOperation::SkewX(ref f), &TransformOperation::SkewX(ref t))
1322            | (&TransformOperation::SkewY(ref f), &TransformOperation::SkewY(ref t)) => {
1323                f.compute_squared_distance(&t)
1324            },
1325            (
1326                &TransformOperation::Translate3D(ref fx, ref fy, ref fz),
1327                &TransformOperation::Translate3D(ref tx, ref ty, ref tz),
1328            ) => {
1329                // For translate, We don't want to require doing layout in order
1330                // to calculate the result, so drop the percentage part.
1331                //
1332                // However, dropping percentage makes us impossible to compute
1333                // the distance for the percentage-percentage case, but Gecko
1334                // uses the same formula, so it's fine for now.
1335                let basis = Length::new(0.);
1336                let fx = fx.resolve(basis).px();
1337                let fy = fy.resolve(basis).px();
1338                let tx = tx.resolve(basis).px();
1339                let ty = ty.resolve(basis).px();
1340
1341                Ok(fx.compute_squared_distance(&tx)?
1342                    + fy.compute_squared_distance(&ty)?
1343                    + fz.compute_squared_distance(&tz)?)
1344            },
1345            (
1346                &TransformOperation::Scale3D(ref fx, ref fy, ref fz),
1347                &TransformOperation::Scale3D(ref tx, ref ty, ref tz),
1348            ) => Ok(fx.compute_squared_distance(&tx)?
1349                + fy.compute_squared_distance(&ty)?
1350                + fz.compute_squared_distance(&tz)?),
1351            (
1352                &TransformOperation::Rotate3D(fx, fy, fz, fa),
1353                &TransformOperation::Rotate3D(tx, ty, tz, ta),
1354            ) => Rotate::Rotate3D(fx, fy, fz, fa)
1355                .compute_squared_distance(&Rotate::Rotate3D(tx, ty, tz, ta)),
1356            (&TransformOperation::RotateX(fa), &TransformOperation::RotateX(ta))
1357            | (&TransformOperation::RotateY(fa), &TransformOperation::RotateY(ta))
1358            | (&TransformOperation::RotateZ(fa), &TransformOperation::RotateZ(ta))
1359            | (&TransformOperation::Rotate(fa), &TransformOperation::Rotate(ta)) => {
1360                fa.compute_squared_distance(&ta)
1361            },
1362            (
1363                &TransformOperation::Perspective(ref fd),
1364                &TransformOperation::Perspective(ref td),
1365            ) => fd
1366                .infinity_or(|l| l.px())
1367                .compute_squared_distance(&td.infinity_or(|l| l.px())),
1368            (&TransformOperation::Perspective(ref p), &TransformOperation::Matrix3D(ref m))
1369            | (&TransformOperation::Matrix3D(ref m), &TransformOperation::Perspective(ref p)) => {
1370                // FIXME(emilio): Is this right? Why interpolating this with
1371                // Perspective but not with anything else?
1372                let mut p_matrix = Matrix3D::identity();
1373                let p = p.infinity_or(|p| p.px());
1374                if p >= 0. {
1375                    p_matrix.m34 = -1. / p.max(1.);
1376                }
1377                p_matrix.compute_squared_distance(&m)
1378            },
1379            // Gecko cross-interpolates amongst all translate and all scale
1380            // functions (See ToPrimitive in layout/style/StyleAnimationValue.cpp)
1381            // without falling back to InterpolateMatrix
1382            _ if self.is_translate() && other.is_translate() => self
1383                .to_translate_3d()
1384                .compute_squared_distance(&other.to_translate_3d()),
1385            _ if self.is_scale() && other.is_scale() => self
1386                .to_scale_3d()
1387                .compute_squared_distance(&other.to_scale_3d()),
1388            _ if self.is_rotate() && other.is_rotate() => self
1389                .to_rotate_3d()
1390                .compute_squared_distance(&other.to_rotate_3d()),
1391            _ => Err(()),
1392        }
1393    }
1394}
1395
1396// ------------------------------------
1397// Individual transforms.
1398// ------------------------------------
1399/// <https://drafts.csswg.org/css-transforms-2/#propdef-rotate>
1400impl ComputedRotate {
1401    fn resolve(&self) -> (Number, Number, Number, Angle) {
1402        // According to the spec:
1403        // https://drafts.csswg.org/css-transforms-2/#individual-transforms
1404        //
1405        // If the axis is unspecified, it defaults to "0 0 1"
1406        match *self {
1407            Rotate::None => (0., 0., 1., Angle::zero()),
1408            Rotate::Rotate3D(rx, ry, rz, angle) => (rx, ry, rz, angle),
1409            Rotate::Rotate(angle) => (0., 0., 1., angle),
1410        }
1411    }
1412}
1413
1414impl Animate for ComputedRotate {
1415    #[inline]
1416    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
1417        use euclid::approxeq::ApproxEq;
1418        match (self, other) {
1419            (&Rotate::None, &Rotate::None) => Ok(Rotate::None),
1420            (&Rotate::Rotate3D(fx, fy, fz, fa), &Rotate::None) => {
1421                // We always normalize direction vector for rotate3d() first, so we should also
1422                // apply the same rule for rotate property. In other words, we promote none into
1423                // a 3d rotate, and normalize both direction vector first, and then do
1424                // interpolation.
1425                let (fx, fy, fz, fa) = transform::get_normalized_vector_and_angle(fx, fy, fz, fa);
1426                Ok(Rotate::Rotate3D(
1427                    fx,
1428                    fy,
1429                    fz,
1430                    fa.animate(&Angle::zero(), procedure)?,
1431                ))
1432            },
1433            (&Rotate::None, &Rotate::Rotate3D(tx, ty, tz, ta)) => {
1434                // Normalize direction vector first.
1435                let (tx, ty, tz, ta) = transform::get_normalized_vector_and_angle(tx, ty, tz, ta);
1436                Ok(Rotate::Rotate3D(
1437                    tx,
1438                    ty,
1439                    tz,
1440                    Angle::zero().animate(&ta, procedure)?,
1441                ))
1442            },
1443            (&Rotate::Rotate3D(_, ..), _) | (_, &Rotate::Rotate3D(_, ..)) => {
1444                // https://drafts.csswg.org/css-transforms-2/#interpolation-of-transform-functions
1445
1446                let (from, to) = (self.resolve(), other.resolve());
1447                // For interpolations with the primitive rotate3d(), the direction vectors of the
1448                // transform functions get normalized first.
1449                let (fx, fy, fz, fa) =
1450                    transform::get_normalized_vector_and_angle(from.0, from.1, from.2, from.3);
1451                let (tx, ty, tz, ta) =
1452                    transform::get_normalized_vector_and_angle(to.0, to.1, to.2, to.3);
1453
1454                // The rotation angle gets interpolated numerically and the rotation vector of the
1455                // non-zero angle is used or (0, 0, 1) if both angles are zero.
1456                //
1457                // Note: the normalization may get two different vectors because of the
1458                // floating-point precision, so we have to use approx_eq to compare two
1459                // vectors.
1460                let fv = DirectionVector::new(fx, fy, fz);
1461                let tv = DirectionVector::new(tx, ty, tz);
1462                if fa.is_zero() || ta.is_zero() || fv.approx_eq(&tv) {
1463                    let (x, y, z) = if fa.is_zero() && ta.is_zero() {
1464                        (0., 0., 1.)
1465                    } else if fa.is_zero() {
1466                        (tx, ty, tz)
1467                    } else {
1468                        // ta.is_zero() or both vectors are equal.
1469                        (fx, fy, fz)
1470                    };
1471                    return Ok(Rotate::Rotate3D(x, y, z, fa.animate(&ta, procedure)?));
1472                }
1473
1474                // Slerp algorithm doesn't work well for Procedure::Add, which makes both
1475                // |this_weight| and |other_weight| be 1.0, and this may make the cosine value of
1476                // the angle be out of the range (i.e. the 4th component of the quaternion vector).
1477                // (See Quaternion::animate() for more details about the Slerp formula.)
1478                // Therefore, if the cosine value is out of range, we get an NaN after applying
1479                // acos() on it, and so the result is invalid.
1480                // Note: This is specialized for `rotate` property. The addition of `transform`
1481                // property has been handled in `ComputedTransform::animate()` by merging two list
1482                // directly.
1483                let rq = if procedure == Procedure::Add {
1484                    // In Transform::animate(), it converts two rotations into transform matrices,
1485                    // and do matrix multiplication. This match the spec definition for the
1486                    // addition.
1487                    // https://drafts.csswg.org/css-transforms-2/#combining-transform-lists
1488                    let f = ComputedTransformOperation::Rotate3D(fx, fy, fz, fa);
1489                    let t = ComputedTransformOperation::Rotate3D(tx, ty, tz, ta);
1490                    let v =
1491                        Transform(vec![f].into()).animate(&Transform(vec![t].into()), procedure)?;
1492                    let (m, _) = v.to_transform_3d_matrix(None)?;
1493                    // Decompose the matrix and retrive the quaternion vector.
1494                    decompose_3d_matrix(Matrix3D::from(m))?.quaternion
1495                } else {
1496                    // If the normalized vectors are not equal and both rotation angles are
1497                    // non-zero the transform functions get converted into 4x4 matrices first and
1498                    // interpolated as defined in section Interpolation of Matrices afterwards.
1499                    // However, per the spec issue [1], we prefer to converting the rotate3D into
1500                    // quaternion vectors directly, and then apply Slerp algorithm.
1501                    //
1502                    // Both ways should be identical, and converting rotate3D into quaternion
1503                    // vectors directly can avoid redundant math operations, e.g. the generation of
1504                    // the equivalent matrix3D and the unnecessary decomposition parts of
1505                    // translation, scale, skew, and persepctive in the matrix3D.
1506                    //
1507                    // [1] https://github.com/w3c/csswg-drafts/issues/9278
1508                    let fq = Quaternion::from_direction_and_angle(&fv, fa.radians64());
1509                    let tq = Quaternion::from_direction_and_angle(&tv, ta.radians64());
1510                    Quaternion::animate(&fq, &tq, procedure)?
1511                };
1512
1513                let (x, y, z, angle) = transform::get_normalized_vector_and_angle(
1514                    rq.0 as f32,
1515                    rq.1 as f32,
1516                    rq.2 as f32,
1517                    // Due to floating point precision issues, the quaternion may contain values
1518                    // slightly larger out of the [-1.0, 1.0] range - Clamp to avoid NaN.
1519                    rq.3.clamp(-1.0, 1.0).acos() as f32 * 2.0,
1520                );
1521
1522                Ok(Rotate::Rotate3D(x, y, z, Angle::from_radians(angle)))
1523            },
1524            (&Rotate::Rotate(_), _) | (_, &Rotate::Rotate(_)) => {
1525                // If this is a 2D rotation, we just animate the <angle>
1526                let (from, to) = (self.resolve().3, other.resolve().3);
1527                Ok(Rotate::Rotate(from.animate(&to, procedure)?))
1528            },
1529        }
1530    }
1531}
1532
1533impl ComputeSquaredDistance for ComputedRotate {
1534    #[inline]
1535    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
1536        use euclid::approxeq::ApproxEq;
1537        match (self, other) {
1538            (&Rotate::None, &Rotate::None) => Ok(SquaredDistance::from_sqrt(0.)),
1539            (&Rotate::Rotate3D(_, _, _, a), &Rotate::None)
1540            | (&Rotate::None, &Rotate::Rotate3D(_, _, _, a)) => {
1541                a.compute_squared_distance(&Angle::zero())
1542            },
1543            (&Rotate::Rotate3D(_, ..), _) | (_, &Rotate::Rotate3D(_, ..)) => {
1544                let (from, to) = (self.resolve(), other.resolve());
1545                let (mut fx, mut fy, mut fz, angle1) =
1546                    transform::get_normalized_vector_and_angle(from.0, from.1, from.2, from.3);
1547                let (mut tx, mut ty, mut tz, angle2) =
1548                    transform::get_normalized_vector_and_angle(to.0, to.1, to.2, to.3);
1549
1550                if angle1.is_zero() && angle2.is_zero() {
1551                    (fx, fy, fz) = (0., 0., 1.);
1552                    (tx, ty, tz) = (0., 0., 1.);
1553                } else if angle1.is_zero() {
1554                    (fx, fy, fz) = (tx, ty, tz);
1555                } else if angle2.is_zero() {
1556                    (tx, ty, tz) = (fx, fy, fz);
1557                }
1558
1559                let v1 = DirectionVector::new(fx, fy, fz);
1560                let v2 = DirectionVector::new(tx, ty, tz);
1561                if v1.approx_eq(&v2) {
1562                    angle1.compute_squared_distance(&angle2)
1563                } else {
1564                    let q1 = Quaternion::from_direction_and_angle(&v1, angle1.radians64());
1565                    let q2 = Quaternion::from_direction_and_angle(&v2, angle2.radians64());
1566                    q1.compute_squared_distance(&q2)
1567                }
1568            },
1569            (&Rotate::Rotate(_), _) | (_, &Rotate::Rotate(_)) => self
1570                .resolve()
1571                .3
1572                .compute_squared_distance(&other.resolve().3),
1573        }
1574    }
1575}
1576
1577/// <https://drafts.csswg.org/css-transforms-2/#propdef-translate>
1578impl ComputedTranslate {
1579    fn resolve(&self) -> (LengthPercentage, LengthPercentage, Length) {
1580        // According to the spec:
1581        // https://drafts.csswg.org/css-transforms-2/#individual-transforms
1582        //
1583        // Unspecified translations default to 0px
1584        match *self {
1585            Translate::None => (
1586                LengthPercentage::zero(),
1587                LengthPercentage::zero(),
1588                Length::zero(),
1589            ),
1590            Translate::Translate(ref tx, ref ty, ref tz) => (tx.clone(), ty.clone(), tz.clone()),
1591        }
1592    }
1593}
1594
1595impl Animate for ComputedTranslate {
1596    #[inline]
1597    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
1598        match (self, other) {
1599            (&Translate::None, &Translate::None) => Ok(Translate::None),
1600            (&Translate::Translate(_, ..), _) | (_, &Translate::Translate(_, ..)) => {
1601                let (from, to) = (self.resolve(), other.resolve());
1602                Ok(Translate::Translate(
1603                    from.0.animate(&to.0, procedure)?,
1604                    from.1.animate(&to.1, procedure)?,
1605                    from.2.animate(&to.2, procedure)?,
1606                ))
1607            },
1608        }
1609    }
1610}
1611
1612impl ComputeSquaredDistance for ComputedTranslate {
1613    #[inline]
1614    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
1615        let (from, to) = (self.resolve(), other.resolve());
1616        Ok(from.0.compute_squared_distance(&to.0)?
1617            + from.1.compute_squared_distance(&to.1)?
1618            + from.2.compute_squared_distance(&to.2)?)
1619    }
1620}
1621
1622/// <https://drafts.csswg.org/css-transforms-2/#propdef-scale>
1623impl ComputedScale {
1624    fn resolve(&self) -> (Number, Number, Number) {
1625        // According to the spec:
1626        // https://drafts.csswg.org/css-transforms-2/#individual-transforms
1627        //
1628        // Unspecified scales default to 1
1629        match *self {
1630            Scale::None => (1.0, 1.0, 1.0),
1631            Scale::Scale(sx, sy, sz) => (sx, sy, sz),
1632        }
1633    }
1634}
1635
1636impl Animate for ComputedScale {
1637    #[inline]
1638    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
1639        match (self, other) {
1640            (&Scale::None, &Scale::None) => Ok(Scale::None),
1641            (&Scale::Scale(_, ..), _) | (_, &Scale::Scale(_, ..)) => {
1642                let (from, to) = (self.resolve(), other.resolve());
1643                // For transform lists, we add by appending to the list of
1644                // transform functions. However, ComputedScale cannot be
1645                // simply concatenated, so we have to calculate the additive
1646                // result here.
1647                if procedure == Procedure::Add {
1648                    // scale(x1,y1,z1)*scale(x2,y2,z2) = scale(x1*x2, y1*y2, z1*z2)
1649                    return Ok(Scale::Scale(from.0 * to.0, from.1 * to.1, from.2 * to.2));
1650                }
1651                Ok(Scale::Scale(
1652                    animate_multiplicative_factor(from.0, to.0, procedure)?,
1653                    animate_multiplicative_factor(from.1, to.1, procedure)?,
1654                    animate_multiplicative_factor(from.2, to.2, procedure)?,
1655                ))
1656            },
1657        }
1658    }
1659}
1660
1661impl ComputeSquaredDistance for ComputedScale {
1662    #[inline]
1663    fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
1664        let (from, to) = (self.resolve(), other.resolve());
1665        Ok(from.0.compute_squared_distance(&to.0)?
1666            + from.1.compute_squared_distance(&to.1)?
1667            + from.2.compute_squared_distance(&to.2)?)
1668    }
1669}