1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
// Copyright © 2021-2023 HQS Quantum Simulations GmbH. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the
// License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
// express or implied. See the License for the specific language governing permissions and
// limitations under the License.
use super::{ToSparseMatrixOperator, ToSparseMatrixSuperOperator};
use crate::fermions::FermionOperator;
use crate::mappings::JordanWignerSpinToFermion;
use crate::spins::{OperateOnSpins, PauliProduct, SpinHamiltonian, SpinIndex};
use crate::{
    CooSparseMatrix, GetValue, OperateOnDensityMatrix, OperateOnState, StruqtureError,
    StruqtureVersionSerializable, SymmetricIndex, MINIMUM_STRUQTURE_VERSION,
};
use num_complex::Complex64;
use qoqo_calculator::{CalculatorComplex, CalculatorFloat};
use serde::{Deserialize, Serialize};
use std::collections::hash_map::{Entry, Iter, Keys, Values};
use std::collections::HashMap;
use std::fmt::{self, Write};
use std::iter::{FromIterator, IntoIterator};
use std::ops;
/// SpinOperators are combinations of PauliProducts with specific CalculatorComplex coefficients.
///
/// This is a representation of sums of pauli products with weightings, in order to build a full hamiltonian.
///
/// # Example
///
/// ```
/// use struqture::prelude::*;
/// use qoqo_calculator::CalculatorComplex;
/// use struqture::spins::{OperateOnSpins, PauliProduct, SpinOperator};
///
/// let mut so = SpinOperator::new();
///
/// // Representing the hamiltonian $ 1/2 \sigma_0^{x} \sigma_1^{x} + 1/5 \sigma_0^{z} $
/// let pp_0x1x = PauliProduct::new().x(0).x(1);
/// let pp_0z = PauliProduct::new().z(0);
/// so.add_operator_product(pp_0x1x.clone(), CalculatorComplex::from(0.5)).unwrap();
/// so.add_operator_product(pp_0z.clone(), CalculatorComplex::from(0.2)).unwrap();
///
/// // Access what you set:
/// assert_eq!(so.get(&pp_0x1x), &CalculatorComplex::from(0.5));
/// assert_eq!(so.get(&pp_0z), &CalculatorComplex::from(0.2));
/// ```
///
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
#[serde(from = "SpinOperatorSerialize")]
#[serde(into = "SpinOperatorSerialize")]
pub struct SpinOperator {
    /// The internal HashMap of PauliProducts and coefficients (CalculatorComplex)
    internal_map: HashMap<PauliProduct, CalculatorComplex>,
}
impl crate::MinSupportedVersion for SpinOperator {}
#[cfg(feature = "json_schema")]
impl schemars::JsonSchema for SpinOperator {
    fn schema_name() -> String {
        "SpinOperator".to_string()
    }
    fn json_schema(gen: &mut schemars::gen::SchemaGenerator) -> schemars::schema::Schema {
        <SpinOperatorSerialize>::json_schema(gen)
    }
}
#[derive(Debug, Clone, PartialEq, Deserialize, Serialize)]
#[cfg_attr(feature = "json_schema", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "json_schema", schemars(deny_unknown_fields))]
///# SpinOperator
///
/// This is a representation of sums of pauli products with weightings, in order to build a full hamiltonian.
struct SpinOperatorSerialize {
    /// List of all non-zero entries in the SpinOperator in the form (PauliProduct, real part of weight, imaginary part of weight).
    items: Vec<(PauliProduct, CalculatorFloat, CalculatorFloat)>,
    /// Minimum struqture version required to de-serialize object
    _struqture_version: StruqtureVersionSerializable,
}
impl From<SpinOperatorSerialize> for SpinOperator {
    fn from(value: SpinOperatorSerialize) -> Self {
        let new_noise_op: SpinOperator = value
            .items
            .into_iter()
            .map(|(key, real, imag)| (key, CalculatorComplex { re: real, im: imag }))
            .collect();
        new_noise_op
    }
}
impl From<SpinOperator> for SpinOperatorSerialize {
    fn from(value: SpinOperator) -> Self {
        let new_noise_op: Vec<(PauliProduct, CalculatorFloat, CalculatorFloat)> = value
            .into_iter()
            .map(|(key, val)| (key, val.re, val.im))
            .collect();
        let current_version = StruqtureVersionSerializable {
            major_version: MINIMUM_STRUQTURE_VERSION.0,
            minor_version: MINIMUM_STRUQTURE_VERSION.1,
        };
        Self {
            items: new_noise_op,
            _struqture_version: current_version,
        }
    }
}
impl<'a> OperateOnDensityMatrix<'a> for SpinOperator {
    type IteratorType = Iter<'a, Self::Index, Self::Value>;
    type KeyIteratorType = Keys<'a, Self::Index, Self::Value>;
    type ValueIteratorType = Values<'a, Self::Index, Self::Value>;
    type Value = CalculatorComplex;
    type Index = PauliProduct;
    // From trait
    fn get(&self, key: &Self::Index) -> &Self::Value {
        match self.internal_map.get(key) {
            Some(value) => value,
            None => &CalculatorComplex::ZERO,
        }
    }
    // From trait
    fn iter(&'a self) -> Self::IteratorType {
        self.internal_map.iter()
    }
    // From trait
    fn keys(&'a self) -> Self::KeyIteratorType {
        self.internal_map.keys()
    }
    // From trait
    fn values(&'a self) -> Self::ValueIteratorType {
        self.internal_map.values()
    }
    // From trait
    fn remove(&mut self, key: &Self::Index) -> Option<Self::Value> {
        self.internal_map.remove(key)
    }
    // From trait
    fn empty_clone(&self, capacity: Option<usize>) -> Self {
        match capacity {
            Some(cap) => Self::with_capacity(cap),
            None => Self::new(),
        }
    }
    /// Overwrites an existing entry or sets a new entry in the SpinOperator with the given (PauliProduct key, CalculatorComplex value) pair.
    ///
    /// # Arguments
    ///
    /// * `key` - The PauliProduct key to set in the SpinOperator.
    /// * `value` - The corresponding CalculatorComplex value to set for the key in the SpinOperator.
    ///
    /// # Returns
    ///
    /// * `Ok(Some(CalculatorComplex))` - The key existed, this is the value it had before it was set with the value input.
    /// * `Ok(None)` - The key did not exist, it has been set with its corresponding value.
    fn set(
        &mut self,
        key: Self::Index,
        value: Self::Value,
    ) -> Result<Option<Self::Value>, StruqtureError> {
        if value != CalculatorComplex::ZERO {
            Ok(self.internal_map.insert(key, value))
        } else {
            match self.internal_map.entry(key) {
                Entry::Occupied(val) => Ok(Some(val.remove())),
                Entry::Vacant(_) => Ok(None),
            }
        }
    }
}
impl<'a> OperateOnState<'a> for SpinOperator {
    // From trait
    fn hermitian_conjugate(&self) -> Self {
        let mut new_operator = Self::with_capacity(self.len());
        for (pauli_product, value) in self.iter() {
            let (new_boson_product, prefactor) = pauli_product.hermitian_conjugate();
            new_operator
                .add_operator_product(new_boson_product, value.conj() * prefactor)
                .expect("Internal bug in add_operator_product");
        }
        new_operator
    }
}
impl<'a> OperateOnSpins<'a> for SpinOperator {
    // From trait
    fn current_number_spins(&self) -> usize {
        let mut max_mode: usize = 0;
        if !self.internal_map.is_empty() {
            for key in self.internal_map.keys() {
                if key.current_number_spins() > max_mode {
                    max_mode = key.current_number_spins()
                }
            }
        }
        max_mode
    }
    /// Gets the maximum index of the SpinOperator.
    ///
    /// # Returns
    ///
    /// * `usize` - The number of spins in the SpinOperator.
    fn number_spins(&self) -> usize {
        self.current_number_spins()
    }
}
impl<'a> ToSparseMatrixOperator<'a> for SpinOperator {}
impl<'a> ToSparseMatrixSuperOperator<'a> for SpinOperator {
    // From trait
    fn sparse_matrix_superoperator_entries_on_row(
        &'a self,
        row: usize,
        number_spins: usize,
    ) -> Result<std::collections::HashMap<usize, Complex64>, StruqtureError> {
        <Self as ToSparseMatrixOperator>::sparse_matrix_superoperator_entries_on_row(
            self,
            row,
            number_spins,
        )
    }
    // From trait
    fn unitary_sparse_matrix_coo(&'a self) -> Result<CooSparseMatrix, StruqtureError> {
        self.sparse_matrix_coo(None)
    }
    // From trait
    fn sparse_lindblad_entries(
        &'a self,
    ) -> Result<Vec<(CooSparseMatrix, CooSparseMatrix, Complex64)>, StruqtureError> {
        let rate = Complex64::default();
        let left: CooSparseMatrix = (vec![], (vec![], vec![]));
        let right: CooSparseMatrix = (vec![], (vec![], vec![]));
        Ok(vec![(left, right, rate)])
    }
}
/// Implements the default function (Default trait) of SpinOperator (an empty SpinOperator).
///
impl Default for SpinOperator {
    fn default() -> Self {
        Self::new()
    }
}
/// Functions for the SpinOperator
///
impl SpinOperator {
    /// Creates a new SpinOperator.
    ///
    /// # Returns
    ///
    /// * `Self` - The new (empty) SpinOperator.
    pub fn new() -> Self {
        SpinOperator {
            internal_map: HashMap::new(),
        }
    }
    /// Creates a new SpinOperator with pre-allocated capacity.
    ///
    /// # Arguments
    ///
    /// * `capacity` - The pre-allocated capacity of the system.
    ///
    /// # Returns
    ///
    /// * `Self` - The new (empty) SpinOperator.
    pub fn with_capacity(capacity: usize) -> Self {
        SpinOperator {
            internal_map: HashMap::with_capacity(capacity),
        }
    }
    /// Separate self into an operator with the terms of given number of spins and an operator with the remaining operations
    ///
    /// # Arguments
    ///
    /// * `number_spins` - Number of spins to filter for in the keys.
    ///
    /// # Returns
    ///
    /// `Ok((separated, remainder))` - Operator with the noise terms where number_spins matches the number of spins the operator product acts on and Operator with all other contributions.
    pub fn separate_into_n_terms(
        &self,
        number_spins: usize,
    ) -> Result<(Self, Self), StruqtureError> {
        let mut separated = Self::default();
        let mut remainder = Self::default();
        for (prod, val) in self.iter() {
            if prod.len() == number_spins {
                separated.add_operator_product(prod.clone(), val.clone())?;
            } else {
                remainder.add_operator_product(prod.clone(), val.clone())?;
            }
        }
        Ok((separated, remainder))
    }
}
impl From<SpinHamiltonian> for SpinOperator {
    /// Converts a SpinHamiltonian into a SpinOperator.
    ///
    /// # Arguments
    ///
    /// * `hamiltonian` - The SpinHamiltonian to convert.
    ///
    /// # Returns
    ///
    /// * `Self` - The SpinHamiltonian converted into a SpinOperator.
    ///
    /// # Panics
    ///
    /// * Internal error in add_operator_product.
    fn from(hamiltonian: SpinHamiltonian) -> Self {
        let mut internal = SpinOperator::new();
        for (key, value) in hamiltonian.into_iter() {
            let bp = PauliProduct::get_key(&key);
            internal
                .add_operator_product(bp, CalculatorComplex::from(value))
                .expect("Internal bug in add_operator_product");
        }
        internal
    }
}
/// Implements the negative sign function of SpinOperator.
///
impl ops::Neg for SpinOperator {
    type Output = SpinOperator;
    /// Implement minus sign for SpinOperator.
    ///
    /// # Returns
    ///
    /// * `Self` - The SpinOperator * -1.
    fn neg(self) -> Self {
        let mut internal = HashMap::with_capacity(self.len());
        for (key, val) in self {
            internal.insert(key.clone(), val.neg());
        }
        SpinOperator {
            internal_map: internal,
        }
    }
}
/// Implements the plus function of SpinOperator by SpinOperator.
///
impl<T, V> ops::Add<T> for SpinOperator
where
    T: IntoIterator<Item = (PauliProduct, V)>,
    V: Into<CalculatorComplex>,
{
    type Output = Self;
    /// Implements `+` (add) for two SpinOperators.
    ///
    /// # Arguments
    ///
    /// * `other` - The SpinOperator to be added.
    ///
    /// # Returns
    ///
    /// * `Self` - The two SpinOperators added together.
    ///
    /// # Panics
    ///
    /// * Internal error in add_operator_product.
    fn add(mut self, other: T) -> Self {
        for (key, value) in other.into_iter() {
            self.add_operator_product(key.clone(), Into::<CalculatorComplex>::into(value))
                .expect("Internal bug in add_operator_product");
        }
        self
    }
}
/// Implements the minus function of SpinOperator by SpinOperator.
///
impl<T, V> ops::Sub<T> for SpinOperator
where
    T: IntoIterator<Item = (PauliProduct, V)>,
    V: Into<CalculatorComplex>,
{
    type Output = Self;
    /// Implements `-` (subtract) for two SpinOperators.
    ///
    /// # Arguments
    ///
    /// * `other` - The SpinOperator to be subtracted.
    ///
    /// # Returns
    ///
    /// * `Self` - The two SpinOperators subtracted.
    ///
    /// # Panics
    ///
    /// * Internal error in add_operator_product.
    fn sub(mut self, other: T) -> Self {
        for (key, value) in other.into_iter() {
            self.add_operator_product(key.clone(), Into::<CalculatorComplex>::into(value) * -1.0)
                .expect("Internal bug in add_operator_product");
        }
        self
    }
}
/// Implements the multiplication function of SpinOperator by CalculatorComplex/CalculatorFloat.
///
impl<T> ops::Mul<T> for SpinOperator
where
    T: Into<CalculatorComplex>,
{
    type Output = Self;
    /// Implement `*` for SpinOperator and CalculatorComplex/CalculatorFloat.
    ///
    /// # Arguments
    ///
    /// * `other` - The CalculatorComplex or CalculatorFloat by which to multiply.
    ///
    /// # Returns
    ///
    /// * `Self` - The SpinOperator multiplied by the CalculatorComplex/CalculatorFloat.
    fn mul(self, other: T) -> Self {
        let other_cc = Into::<CalculatorComplex>::into(other);
        let mut internal = HashMap::with_capacity(self.len());
        for (key, val) in self {
            internal.insert(key, val * other_cc.clone());
        }
        SpinOperator {
            internal_map: internal,
        }
    }
}
/// Implements the multiplication function of SpinOperator by SpinOperator.
///
impl ops::Mul<SpinOperator> for SpinOperator {
    type Output = Self;
    /// Implement `*` for SpinOperator and SpinOperator.
    ///
    /// # Arguments
    ///
    /// * `other` - The SpinOperator to multiply by.
    ///
    /// # Returns
    ///
    /// * `Self` - The two SpinOperators multiplied.
    ///
    /// # Panics
    ///
    /// * Internal error in add_operator_product.
    fn mul(self, other: SpinOperator) -> Self {
        let mut spin_op = SpinOperator::with_capacity(self.len() * other.len());
        for (pps, vals) in self {
            for (ppo, valo) in other.iter() {
                let (ppp, coefficient) = pps.clone() * ppo.clone();
                let coefficient =
                    Into::<CalculatorComplex>::into(valo) * coefficient * vals.clone();
                spin_op
                    .add_operator_product(ppp, coefficient)
                    .expect("Internal bug in add_operator_product");
            }
        }
        spin_op
    }
}
/// Implements the multiplication function of SpinOperator by PauliProduct.
///
impl ops::Mul<PauliProduct> for SpinOperator {
    type Output = Self;
    /// Implement `*` for SpinOperator and PauliProduct.
    ///
    /// # Arguments
    ///
    /// * `other` - PauliProduct
    ///
    /// # Returns
    ///
    /// * `Self` - The SpinOperator multiplied by the PauliProduct.
    ///
    /// # Panics
    ///
    /// * Internal error in add_operator_product.
    fn mul(self, ppo: PauliProduct) -> Self {
        let mut spin_op = SpinOperator::with_capacity(self.len());
        for (pps, vals) in self {
            let (ppp, coefficient) = pps.clone() * ppo.clone();
            let coefficient = CalculatorComplex::from(coefficient) * vals.clone();
            spin_op
                .add_operator_product(ppp, coefficient)
                .expect("Internal bug in add_operator_product");
        }
        spin_op
    }
}
/// Implements the multiplication function of PauliProduct by SpinOperator.
///
impl ops::Mul<SpinOperator> for PauliProduct {
    type Output = SpinOperator;
    /// Implement `*` for PauliProduct and SpinOperator.
    ///
    /// # Arguments
    ///
    /// * `other` - The SpinOperator to multiply by.
    ///
    /// # Returns
    ///
    /// * `Self` - A SpinOperator derived from the PauliProduct, SpinOperator multiplication.
    ///
    /// # Panics
    ///
    /// * Internal error in add_operator_product.
    fn mul(self, other: SpinOperator) -> SpinOperator {
        let mut spin_op = SpinOperator::with_capacity(other.len());
        for (ppo, valo) in other.iter() {
            let (ppp, coefficient) = self.clone() * ppo.clone();
            let coefficient = valo.clone() * CalculatorComplex::from(coefficient);
            spin_op
                .add_operator_product(ppp, coefficient)
                .expect("Internal bug in add_operator_product");
        }
        spin_op
    }
}
/// Implements the into_iter function (IntoIterator trait) of SpinOperator.
///
impl IntoIterator for SpinOperator {
    type Item = (PauliProduct, CalculatorComplex);
    type IntoIter = std::collections::hash_map::IntoIter<PauliProduct, CalculatorComplex>;
    /// Returns the SpinOperator in Iterator form.
    ///
    /// # Returns
    ///
    /// * `Self::IntoIter` - The SpinOperator in Iterator form.
    fn into_iter(self) -> Self::IntoIter {
        self.internal_map.into_iter()
    }
}
/// Implements the into_iter function (IntoIterator trait) of reference SpinOperator.
///
impl<'a> IntoIterator for &'a SpinOperator {
    type Item = (&'a PauliProduct, &'a CalculatorComplex);
    type IntoIter = Iter<'a, PauliProduct, CalculatorComplex>;
    /// Returns the reference SpinOperator in Iterator form.
    ///
    /// # Returns
    ///
    /// * `Self::IntoIter` - The reference SpinOperator in Iterator form.
    fn into_iter(self) -> Self::IntoIter {
        self.internal_map.iter()
    }
}
/// Implements the from_iter function (FromIterator trait) of SpinOperator.
///
impl FromIterator<(PauliProduct, CalculatorComplex)> for SpinOperator {
    /// Returns the object in SpinOperator form, from an Iterator form of the object.
    ///
    /// # Arguments
    ///
    /// * `iter` - The iterator containing the information from which to create the SpinOperator.
    ///
    /// # Returns
    ///
    /// * `Self::IntoIter` - The iterator in SpinOperator form.
    ///
    /// # Panics
    ///
    /// * Internal error in add_operator_product.
    fn from_iter<I: IntoIterator<Item = (PauliProduct, CalculatorComplex)>>(iter: I) -> Self {
        let mut so = SpinOperator::new();
        for (pp, cc) in iter {
            so.add_operator_product(pp, cc)
                .expect("Internal bug in add_operator_product");
        }
        so
    }
}
/// Implements the extend function (Extend trait) of SpinOperator.
///
impl Extend<(PauliProduct, CalculatorComplex)> for SpinOperator {
    /// Extends the SpinOperator by the specified operations (in Iterator form).
    ///
    /// # Arguments
    ///
    /// * `iter` - The iterator containing the operations by which to extend the SpinOperator.
    ///
    /// # Panics
    ///
    /// * Internal error in add_operator_product.
    fn extend<I: IntoIterator<Item = (PauliProduct, CalculatorComplex)>>(&mut self, iter: I) {
        for (pp, cc) in iter {
            self.add_operator_product(pp, cc)
                .expect("Internal bug in add_operator_product");
        }
    }
}
/// Implements the format function (Display trait) of SpinOperator.
///
impl fmt::Display for SpinOperator {
    /// Formats the SpinOperator using the given formatter.
    ///
    /// # Arguments
    ///
    /// * `f` - The formatter to use.
    ///
    /// # Returns
    ///
    /// * `std::fmt::Result` - The formatted SpinOperator.
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut output = "SpinOperator{\n".to_string();
        for (key, val) in self.iter() {
            writeln!(output, "{}: {},", key, val)?;
        }
        output.push('}');
        write!(f, "{}", output)
    }
}
impl JordanWignerSpinToFermion for SpinOperator {
    type Output = FermionOperator;
    /// Implements JordanWignerSpinToFermion for a SpinOperator.
    ///
    /// The convention used is that |0> represents an empty fermionic state (spin-orbital),
    /// and |1> represents an occupied fermionic state.
    ///
    /// # Returns
    ///
    /// `FermionOperator` - The fermionic operator that results from the transformation.
    fn jordan_wigner(&self) -> Self::Output {
        let mut out = FermionOperator::new();
        for pp in self.keys() {
            out = out + pp.jordan_wigner() * self.get(pp);
        }
        out
    }
}
#[cfg(test)]
mod test {
    use super::*;
    use serde_test::{assert_tokens, Configure, Token};
    // Test the Clone and PartialEq traits of SpinOperator
    #[test]
    fn so_from_sos() {
        let pp: PauliProduct = PauliProduct::new().z(0);
        let sos = SpinOperatorSerialize {
            items: vec![(pp.clone(), 0.5.into(), 0.0.into())],
            _struqture_version: StruqtureVersionSerializable {
                major_version: 1,
                minor_version: 0,
            },
        };
        let mut so = SpinOperator::new();
        so.set(pp, CalculatorComplex::from(0.5)).unwrap();
        assert_eq!(SpinOperator::from(sos.clone()), so);
        assert_eq!(SpinOperatorSerialize::from(so), sos);
    }
    // Test the Clone and PartialEq traits of SpinOperator
    #[test]
    fn clone_partial_eq() {
        let pp: PauliProduct = PauliProduct::new().z(0);
        let sos = SpinOperatorSerialize {
            items: vec![(pp, 0.5.into(), 0.0.into())],
            _struqture_version: StruqtureVersionSerializable {
                major_version: 1,
                minor_version: 0,
            },
        };
        // Test Clone trait
        assert_eq!(sos.clone(), sos);
        // Test PartialEq trait
        let pp_1: PauliProduct = PauliProduct::new().z(0);
        let sos_1 = SpinOperatorSerialize {
            items: vec![(pp_1, 0.5.into(), 0.0.into())],
            _struqture_version: StruqtureVersionSerializable {
                major_version: 1,
                minor_version: 0,
            },
        };
        let pp_2: PauliProduct = PauliProduct::new().z(2);
        let sos_2 = SpinOperatorSerialize {
            items: vec![(pp_2, 0.5.into(), 0.0.into())],
            _struqture_version: StruqtureVersionSerializable {
                major_version: 1,
                minor_version: 0,
            },
        };
        assert!(sos_1 == sos);
        assert!(sos == sos_1);
        assert!(sos_2 != sos);
        assert!(sos != sos_2);
    }
    // Test the Debug trait of SpinOperator
    #[test]
    fn debug() {
        let pp: PauliProduct = PauliProduct::new().z(0);
        let sos = SpinOperatorSerialize {
            items: vec![(pp, 0.5.into(), 0.0.into())],
            _struqture_version: StruqtureVersionSerializable {
                major_version: 1,
                minor_version: 0,
            },
        };
        assert_eq!(
            format!("{:?}", sos),
            "SpinOperatorSerialize { items: [(PauliProduct { items: [(0, Z)] }, Float(0.5), Float(0.0))], _struqture_version: StruqtureVersionSerializable { major_version: 1, minor_version: 0 } }"
        );
    }
    /// Test SpinOperator Serialization and Deserialization traits (readable)
    #[test]
    fn serde_readable() {
        let pp = PauliProduct::new().x(0);
        let sos = SpinOperatorSerialize {
            items: vec![(pp, 0.5.into(), 0.0.into())],
            _struqture_version: StruqtureVersionSerializable {
                major_version: 1,
                minor_version: 0,
            },
        };
        assert_tokens(
            &sos.readable(),
            &[
                Token::Struct {
                    name: "SpinOperatorSerialize",
                    len: 2,
                },
                Token::Str("items"),
                Token::Seq { len: Some(1) },
                Token::Tuple { len: 3 },
                Token::Str("0X"),
                Token::F64(0.5),
                Token::F64(0.0),
                Token::TupleEnd,
                Token::SeqEnd,
                Token::Str("_struqture_version"),
                Token::Struct {
                    name: "StruqtureVersionSerializable",
                    len: 2,
                },
                Token::Str("major_version"),
                Token::U32(1),
                Token::Str("minor_version"),
                Token::U32(0),
                Token::StructEnd,
                Token::StructEnd,
            ],
        );
    }
    /// Test SpinOperator Serialization and Deserialization traits (compact)
    #[test]
    fn serde_compact() {
        let pp = PauliProduct::new().x(0);
        let sos = SpinOperatorSerialize {
            items: vec![(pp, 0.5.into(), 0.0.into())],
            _struqture_version: StruqtureVersionSerializable {
                major_version: 1,
                minor_version: 0,
            },
        };
        assert_tokens(
            &sos.compact(),
            &[
                Token::Struct {
                    name: "SpinOperatorSerialize",
                    len: 2,
                },
                Token::Str("items"),
                Token::Seq { len: Some(1) },
                Token::Tuple { len: 3 },
                Token::Seq { len: Some(1) },
                Token::Tuple { len: 2 },
                Token::U64(0),
                Token::UnitVariant {
                    name: "SingleSpinOperator",
                    variant: "X",
                },
                Token::TupleEnd,
                Token::SeqEnd,
                Token::NewtypeVariant {
                    name: "CalculatorFloat",
                    variant: "Float",
                },
                Token::F64(0.5),
                Token::NewtypeVariant {
                    name: "CalculatorFloat",
                    variant: "Float",
                },
                Token::F64(0.0),
                Token::TupleEnd,
                Token::SeqEnd,
                Token::Str("_struqture_version"),
                Token::Struct {
                    name: "StruqtureVersionSerializable",
                    len: 2,
                },
                Token::Str("major_version"),
                Token::U32(1),
                Token::Str("minor_version"),
                Token::U32(0),
                Token::StructEnd,
                Token::StructEnd,
            ],
        );
    }
}