1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
//! # Linked
//!
//! Contains a 'LinkedCollection' trait for implementing a 'collection' of linked elements, as well
//! as a default implementation of a 'linked collection' called 'LinkedList'. This also contains
//! implementations of the following: DoublyLinkedList. A 'linked list' is a list a elements that are
//! linked to the next element in the list.

use core::fmt::{Debug, Formatter};
use std::ops::{Index, IndexMut};
use crate::collection::{Collection, Reversible};
use len_trait::{Clear, Empty, Len};
use crate::kv;
use crate::map::{KeyValue, MapCollection};
use crate::map::traversable::*;

// A trait for 'collections' that can implement a 'linked collection'.
pub trait LinkedCollection<K, V>: TraversableCollection<K, V>
    where
        K: PartialEq + PartialOrd + Clone + Debug,
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Appends a 'node' with the specified value to the back of this 'linked collection'.
    fn append(&mut self, value: V);

    /// Sets whether this 'linked collection' is circular or not.
    fn circular(&mut self, c: bool);

    /// Returns true if this 'linked collection' has the specified value.
    fn has_value(&self, value: V) -> bool;

    /// Returns true if this 'linked collection' is circular.
    fn is_circular(&self) -> bool;

    /// Prepends a 'node' with the specified value to the front of this 'linked collection'.
    fn prepend(&mut self, value: V);
}

////////////////////////////////////////////////////////////////////////////////////////////////////
// LinkedList
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Contains data for traversing a 'linked list'.
pub struct LinkedListTraverser<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Current 'node' key that this 'traverser' is on.
    key: Option<usize>,
    /// The 'linked list' being traversed.
    list: LinkedList<V>,
}

// Traverser functions for LinkedListTraverser
impl<V> Traverser<usize> for LinkedListTraverser<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Item type.
    type Item = V;

    /// Returns true if this 'traverser' has a next 'node' to traverse to.
    ///
    /// # Warning
    ///
    /// If this 'traverser' is traversing a circular 'linked list', this function will always
    /// return true. This will cause loops dependent on the return value of this function to
    /// loop forever.
    fn has_next(&self) -> bool { self.list.is_circular() || self.key.is_some() }

    /// Traverses to and returns the next 'node' linked to the current 'node' that this
    /// 'traverser' is on, or None if the current 'node' has no next links. Unlike 'iterators',
    /// this does not consume the 'nodes', meaning this 'traverser' can be used to revisit
    /// other 'nodes' using the move_to or next function.
    fn next(&mut self) -> Option<Self::Item> {
        // If traverser's key is None, return None.
        if self.key.is_none() {
            return None;
        }

        // For each node in this linked list.
        for i in 0..self.list.nodes.len() {
            // If the traverser's node matches a node.
            if self.key.unwrap() == self.list.nodes[i].pair.key {
                // If it's not the last node, set traverser's key to the next node.
                if i < self.list.nodes.len() - 1 {
                    self.key = Some(self.list.nodes[i + 1].pair.key.clone());
                }
                // If it's the last node.
                else {
                    // If the linked list is circular, set the traverser's node to the first node.
                    if self.list.is_circular() {
                        self.key = Some(self.list.nodes[0].pair.key);
                    }
                    // If the linked list is not circular, set the traverser's node to None.
                    else {
                        self.key = None;
                    }
                }

                // Return the current node's data.
                return Some(self.list.nodes[i].pair.value.clone());
            }
        }

        // Should not reach this unless traverser node is not a node in the linked list.
        None
    }
}

// LinkedListTraverser functions
impl<V> LinkedListTraverser<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Creates a new empty 'linked list traverser'.
    #[allow(dead_code)]
    pub fn new() -> Self {
        LinkedListTraverser {
            key: None,
            list: LinkedList::new(),
        }
    }
}

/// Contains a list of 'nodes' belonging to a singly 'linked list'.
pub struct LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Circular 'linked list' flag.
    circular: bool,
    /// List of nodes.
    nodes: Vec<Node<usize, V>>,
}

// Clear function for LinkedList
impl<V> Clear for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Clears all nodes from this 'linked list'.
    fn clear(&mut self) { self.nodes.clear() }
}

// Clone function for LinkedList
impl<V> Clone for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Returns a clone of this 'linked list'.
    fn clone(&self) -> Self {
        LinkedList {
            circular: self.circular,
            nodes: self.nodes.clone(),
        }
    }
}

// Debug function for LinkedList
impl<V> Debug for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Displays debug information for this 'linked list'.
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("LinkedList")
            .field("circular", &self.circular)
            .field("nodes", &self.nodes)
            .finish()
    }
}

// Empty function for LinkedList
impl<V> Empty for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Returns true if this 'linked list' is empty.
    fn is_empty(&self) -> bool { self.nodes.is_empty() }
}

// Index function for LinkedList
impl<V> Index<usize> for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Output type.
    type Output = V;

    /// Returns the data value of the 'node' at the specified index.
    ///
    /// # Panics
    ///
    /// This function panics if the index is out-of-bounds.
    fn index(&self, index: usize) -> &Self::Output {
        if index >= self.nodes.len() {
            panic!("Cannot return node data due to out-of-bounds index.");
        }

        &self.nodes[index].pair.value
    }
}

// IndexMut function for LinkedList
impl<V> IndexMut<usize> for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Returns the data value of the 'node' at the specified index.
    ///
    /// # Panics
    ///
    /// This function panics if the index is out-of-bounds.
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        if index >= self.nodes.len() {
            panic!("Cannot return node data due to out-of-bounds index.");
        }

        &mut self.nodes[index].pair.value
    }
}

// IntoIterator function for LinkedList
impl<V> IntoIterator for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Item type.
    type Item = (usize, V);

    /// IntoIter type.
    type IntoIter = alloc::vec::IntoIter<(usize, V)>;

    /// Converts this 'linked list' into an 'iterator'.
    fn into_iter(self) -> Self::IntoIter {
        let mut vec: Vec<(usize, V)> = Vec::new();

        for i in 0..self.nodes.len() {
            vec.push((self.nodes[i].pair.key.clone(), self.nodes[i].pair.value.clone()));
        }

        vec.into_iter()
    }
}

// IntoTraverser function for LinkedList
impl<V> IntoTraverser<usize> for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Item type.
    type Item = V;
    /// Traverser type.
    type IntoTrav = LinkedListTraverser<V>;

    /// Creates a 'traverser' from a value.
    fn into_trav(self) -> Self::IntoTrav {
        LinkedListTraverser {
            key: Some(self.nodes[0].pair.key.clone()),
            list: self,
        }
    }
}

// Len function for LinkedList
impl<V> Len for LinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Returns the length of this 'linked list'.
    fn len(&self) -> usize { self.nodes.len() }
}

// PartialEq function for LinkedList
impl<V> PartialEq for LinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Returns true if this 'linked list' is equal to the specified 'linked list', meaning they
    /// contain the same elements in the same order.
    fn eq(&self, other: &Self) -> bool {
        // If lengths do not match, return false.
        if self.len() != other.len() {
            return false;
        }

        // If a key or value does not match, return false.
        for i in 0..self.len() {
            if self.nodes[i].pair.value != other.nodes[i].pair.value {
                return false;
            }
        }

        true
    }
}

// Reversible function for LinkedList
impl<V> Reversible for LinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Returns a copy of this 'linked list' in reverse order.
    fn reverse(&mut self) -> Self {
        let mut rev: LinkedList<V> = LinkedList::new();

        rev.circular = self.circular;

        for i in 0..self.len() {
            rev.prepend(self.nodes[i].pair.value.clone());
        }

        rev
    }
}

// Collection functions for LinkedList
impl<V> Collection for LinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// The element type.
    type Element = KeyValue<usize, V>;

    /// Returns the capacity of this 'linked list'.
    fn capacity(&self) -> usize { self.len() }

    /// Returns true if this 'linked list' contains the specified item.
    fn contains(&self, item: &KeyValue<usize, V>) -> bool {
        // If the key value and the data value match, return true.
        for i in 0..self.len() {
            if self.nodes[i].pair == *item {
                return true;
            }
        }

        false
    }

    /// Returns true if this 'linked list' contains the specified vector.
    fn contains_all(&self, vec: &Vec<KeyValue<usize, V>>) -> bool {
        for i in vec.into_iter() {
            if !self.contains(i) {
                return false;
            }
        }

        true
    }

    /// Returns this 'linked list' as a 'vector'.
    fn to_vec(&self) -> Vec<Self::Element> {
        let mut vec: Vec<Self::Element> = Vec::new();

        for i in 0..self.len() {
            vec.push(self.nodes[i].pair.clone());
        }

        vec
    }
}

// MapCollection functions for LinkedList
impl<V> MapCollection<usize, V> for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Returns true if the specified key exists.
    fn exists(&self, key: usize) -> bool { key < self.nodes.len() }

    /// Returns the value associated with the specified key, or None if the key does not exist.
    fn get(&self, key: usize) -> Option<&V> {
        if key >= self.nodes.len() {
            return None;
        }

        Some(&self.nodes[key].pair.value)
    }

    /// Inserts a new 'node' with the specified key and data value into this 'linked list'. Returns
    /// true if successful.
    fn insert(&mut self, pair: KeyValue<usize, V>) -> bool {
        // Insert the new node at the specified index (pair.0) with the specified data value (pair.1).
        self.nodes.insert(pair.key.clone(), Node {
            pair: pair.clone(),
            links: Vec::new(),
        });

        // Add an empty (None) link to the new node.
        self.nodes[pair.key.clone()].links.push(None);

        // Update links for all nodes.
        for i in 0..self.len() {
            // If it's not the last node, set link to the next node.
            if i < self.len() - 1 {
                self.nodes[i].links[0] = Some(i + 1);
            }
            // If it's the last node.
            else {
                // If the linked list is circular, set link to the first node.
                if self.is_circular() {
                    self.nodes[i].links[0] = Some(0);
                }
                // If the linked list is not circular, set link to None.
                else {
                    self.nodes[i].links[0] = None;
                }
            }

            // Set the key for each node to the current index value (i).
            self.nodes[i].pair.key = i;
        }

        true
    }

    /// Removes the 'node' with the specified key, if it exists. Returns true if successful. Returns
    /// false if no 'node' with the specified key exists.
    fn remove(&mut self, key: usize) -> bool {
        // If key is out-of-bounds, return false.
        if key >= self.nodes.len() {
            return false;
        }

        // Remove the node with the specified key.
        self.nodes.remove(key);

        // Update links for all nodes.
        for i in 0..self.len() {
            // If it's not the last node, set link to the next node.
            if i < self.len() - 1 {
                self.nodes[i].links[0] = Some(i + 1);
            }
            // If it's the last node.
            else {
                // If the linked list is circular, set link to the first node.
                if self.is_circular() {
                    self.nodes[i].links[0] = Some(0);
                }
                // If the linked list is not circular, set link to None.
                else {
                    self.nodes[i].links[0] = None;
                }
            }
        }

        true
    }

    /// Replaces the value of the 'node' with the specified key with the specified value. Returns
    /// true if successful. Returns false if the specified key does not exist.
    fn replace(&mut self, pair: KeyValue<usize, V>) -> bool {
        if pair.key >= self.nodes.len() {
            return false;
        }

        self.nodes[pair.key.clone()].pair.value = pair.value.clone();

        true
    }
}

// TraversableCollection functions for LinkedList
impl<V> TraversableCollection<usize, V> for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Edge type.
    type EdgeType = Edge<usize, true, false>;

    /// Returns the degree of the 'node' with the specified key, or returns -1 if no such 'node'
    /// with that key exists. The degree of a 'node' is the number of 'nodes' it is connected to.
    fn degree_of(&self, key: usize) -> isize {
        if key >= self.nodes.len() {
            return -1;
        }

        self.nodes[key].links.len() as isize
    }

    /// Returns the diameter of this 'linked list'. The diameter of a 'linked list' is the longest
    /// path from one 'node' to another 'node', therefore equivalent to the length of the 'linked
    /// list'.
    fn diameter(&self) -> f32 { self.len() as f32 }

    /// Returns a list of the 'edges' in the 'linked list'.
    fn edge_list(&self) -> Vec<Self::EdgeType> {
        let mut vec: Vec<Edge<usize, true, false>> = Vec::new();

        for i in 0..self.nodes.len() {
            if self.nodes[i].links[0].is_some() {
                vec.push(Edge {
                    node_a: self.nodes[i].pair.key.clone(),
                    node_b: self.nodes[i].links[0].clone().unwrap().clone(),
                    weight: 1.0,
                })
            }
        }

        vec
    }

    /// Returns the number of edges in this 'traversable collection'.
    fn edges(&self) -> usize { self.nodes.len() - 1 }

    /// Returns true if the 'linked list' has a cycle within it. A cycle is where 'nodes' are
    /// connected together in a circular path.
    fn has_cycle(&self) -> bool { self.is_circular() }

    /// Returns true if this 'linked list' is a bipartite 'graph'. A bipartite 'graph' is a graph
    /// that can be divided into two disjoint sets with no 'node' in either set connected to a
    /// 'node' in the same set. If this 'linked list' is not circular or if it is and has an even
    /// number of 'nodes', this returns false.
    fn is_bipartite(&self) -> bool { !self.is_circular() || (self.len() % 2 == 0) }

    /// Returns true if every 'node' in this 'linked list' is connected to at least one other 'node'.
    /// This always returns true for 'linked lists'.
    fn is_connected(&self) -> bool { true }

    /// Returns true if the 'node' with the second specified key is a neighbor of the 'node'
    /// with the first specified key. If either key does not belong to an existing 'node', or the
    /// two 'nodes' are not neighbors, this returns false. A 'node' neighbor is a 'node' that is
    /// directly linked to the other 'node'.
    fn is_neighbor(&self, key_a: usize, key_b: usize) -> bool {
        // If keys are valid and the keys are next to each other in the linked list, return true.
        (key_a < self.nodes.len() && key_b < self.nodes.len()) && (key_a - 1 == key_b || key_a + 1 == key_b)
    }

    /// Returns a 'doubly linked list' containing the path from the first specified key to the
    /// second specified key. Returns None if there is no path. The path contains the key/value
    /// pairs of each 'node' in the path and is stored in order from key_a at the start to
    /// key_b at the end.
    fn path_of(&mut self, key_a: usize, key_b: usize) -> Option<DoublyLinkedList<KeyValue<usize, V>>> {
        // If key_a and key_b are valid.
        if key_a < self.nodes.len() && key_b < self.nodes.len() {
            let mut path: DoublyLinkedList<KeyValue<usize, V>> = DoublyLinkedList::new();

            // Store the key/value pairs for each node from key_a to key_b
            if key_a <= key_b {
                for i in key_a..(key_b + 1) {
                    path.insert(
                        KeyValue {
                            key: i - key_a,
                            value: self.nodes[i].pair.clone()
                        });
                }
            }
            else {
                for i in (key_b..(key_a + 1)).rev() {
                    path.insert(
                        KeyValue {
                            key: i - key_b,
                            value: self.nodes[i].pair.clone()
                        });
                }
            }

            return Some(path);
        }

        // Return None if no path from key_a to key_b was found.
        None
    }
}

// LinkedCollection functions for LinkedList
impl<V> LinkedCollection<usize, V> for LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Appends a 'node' with the specified value to the back of this 'linked list'.
    fn append(&mut self, value: V) {
        self.insert(KeyValue { key: self.len(), value } );
    }

    /// Sets whether this 'linked list' is circular or not.
    fn circular(&mut self, c: bool) {
        // If the linked list's circular state does not match the specified state (c).
        if self.circular != c {
            // Set linked list circular state to c.
            self.circular = c;

            let len: usize = self.len();

            // If linked list is now circular, set link of last node to point to the first node.
            if self.circular {
                self.nodes[len - 1].links[0] = Some(self.nodes[0].pair.key.clone());
            }
            // If linked list is now not circular, set link of last node to None.
            else {
                self.nodes[len - 1].links[0] = None;
            }
        }
    }

    /// Returns true if this 'linked list' has the specified value.
    fn has_value(&self, value: V) -> bool {
        // If a node's data value matches value, return true.
        for i in 0..self.len() {
            if self.nodes[i].pair.value == value {
                return true;
            }
        }

        false
    }

    /// Returns true if this 'linked list' is circular.
    fn is_circular(&self) -> bool { self.circular }

    /// Prepends a 'node' with the specified value to the front of this 'linked list'.
    fn prepend(&mut self, value: V) { self.insert(KeyValue { key: 0, value } ); }
}

// LinkedList functions
impl<V> LinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Creates a new circular 'linked list' that contains the elements in the specified vector.
    #[allow(dead_code)]
    pub fn circular_from_vec(v: &Vec<V>) -> Self {
        let mut list: LinkedList<V> = LinkedList::new_circular();
        let mut index: usize = 0;

        for i in v.into_iter() {
            list.insert(kv!(index, (i.clone())));
            index += 1;
        }

        list
    }

    /// Creates a new empty 'linked list'.
    pub fn new() -> Self {
        LinkedList {
            circular: false,
            nodes: Vec::new(),
        }
    }

    /// Creates a new empty circular 'linked list'.
    #[allow(dead_code)]
    pub fn new_circular() -> Self {
        LinkedList {
            circular: true,
            nodes: Vec::new(),
        }
    }

    /// Creates a new 'linked list' that contains the elements in the specified vector.
    #[allow(dead_code)]
    pub fn from_vec(v: &Vec<V>) -> Self {
        let mut list: LinkedList<V> = LinkedList::new();
        let mut index: usize = 0;

        for i in v.into_iter() {
            list.insert(kv!(index, (i.clone())));
            index += 1;
        }

        list
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////
// DoublyLinkedList
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Contains data for traversing a 'doubly linked list'.
pub struct DoublyLinkedListTraverser<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Current 'node' index that this 'traverser' is on.
    key: Option<usize>,
    /// The 'doubly linked list' being traversed.
    list: DoublyLinkedList<V>,
}

// Traverser functions for DoublyLinkedListTraverser
impl<V> Traverser<usize> for DoublyLinkedListTraverser<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Item type.
    type Item = V;

    /// Returns true if this 'traverser' has a next 'node' to traverse to.
    ///
    /// # Warning
    ///
    /// If this 'traverser' is traversing a circular 'doubly linked list', this function will
    /// always return true. This will cause loops dependent on the return value of this function
    /// to loop forever.
    fn has_next(&self) -> bool { self.list.is_circular() || self.key.is_some() }

    /// Traverses to and returns the next 'node' linked to the current 'node' that this
    /// 'traverser' is on, or None if the current 'node' has no next links. Unlike 'iterators',
    /// this does not consume the 'nodes', meaning this 'traverser' can be used to revisit
    /// other 'nodes' using the move_to or next function.
    fn next(&mut self) -> Option<Self::Item> {
        // If traverser's key is None, return None.
        if self.key.is_none() {
            return None;
        }

        // For each node in the linked list.
        for i in 0..self.list.nodes.len() {
            // If the traverser's key matches a node.
            if self.key.unwrap() == self.list.nodes[i].pair.key {
                // If it's not the last node, set traverser's key to the next node.
                if i < self.list.nodes.len() - 1 {
                    self.key = Some(self.list.nodes[i + 1].pair.key.clone());
                }
                // If it's the last node.
                else {
                    // If the linked list is circular, set the traverser's node to the first node.
                    if self.list.is_circular() {
                        self.key = Some(self.list.nodes[0].pair.key);
                    }
                    // If the linked list is not circular, set the traverser's node to None.
                    else {
                        self.key = None;
                    }
                }

                // Return the current node's data.
                return Some(self.list.nodes[i].pair.value.clone());
            }
        }

        // Should not reach this unless traverser node is not a node in the linked list.
        None
    }
}

// RevTraverser functions for DoublyLinkedListTraverser
impl<V> RevTraverser<usize> for DoublyLinkedListTraverser<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Returns true if this 'traverser' has a previous 'node' to traverse to.
    ///
    /// # Warning
    ///
    /// If this 'traverser' is traversing a circular 'doubly linked list', this function will
    /// always return true. This will cause loops dependent on the return value of this function
    /// to loop forever.
    fn has_prev(&self) -> bool {
        // If the linked list is circular, or the traverser's key is None, or if the traverser's key
        // is not the first node, return true.
        self.list.is_circular() || self.key.is_none() ||
            (self.key.is_some() && self.key.unwrap() != self.list.nodes[0].pair.key.clone())
    }

    /// Traverses to and returns the previous 'node' linked to the current 'node' that this
    /// 'reversible traverser' is on, or None if the current 'node' has no previous links.
    /// Unlike 'iterators', this does not consume the 'nodes', meaning this 'reversible
    /// traverser' can be used to revisit other 'nodes' using the move_to, next, or prev
    /// function.
    fn prev(&mut self) -> Option<Self::Item> {
        // If the traverser's key is None, set traverser's key to the last node and return the last
        // node's data.
        if self.key.is_none() {
            self.key = Some(self.list.nodes[self.list.nodes.len() - 1].pair.key.clone());
            return Some(self.list.nodes[self.list.nodes.len() - 1].pair.value.clone());
        }

        // If the traverser's key matches a node other than the first node, set the traverser's key
        // to the previous node and return the previous node's data.
        for i in 1..self.list.nodes.len() {
            if self.key.unwrap() == self.list.nodes[i].pair.key {
                self.key = Some(self.list.nodes[i - 1].pair.key.clone());
                return Some(self.list.nodes[i - 1].pair.value.clone());
            }
        }

        // Return None if the traverser's key is on the first node.
        None
    }
}

// DoublyLinkedListTraverser functions
impl<V> DoublyLinkedListTraverser<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Creates a new empty 'doubly linked list traverser'.
    pub fn new() -> Self {
        DoublyLinkedListTraverser {
            key: None,
            list: DoublyLinkedList::new(),
        }
    }
}

/// Contains the root 'node' belonging to a singly 'linked list'.
pub struct DoublyLinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Circular 'linked list' flag.
    circular: bool,
    /// List of nodes.
    nodes: Vec<Node<usize, V>>,
}

// Clear function for DoublyLinkedList
impl<V> Clear for DoublyLinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd ,
{
    /// Clears all nodes from this 'doubly linked list'.
    fn clear(&mut self) { self.nodes.clear() }
}

// Clone function for DoublyLinkedList
impl<V> Clone for DoublyLinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Returns a clone of this 'doubly linked list'.
    fn clone(&self) -> Self {
        DoublyLinkedList {
            circular: self.circular,
            nodes: self.nodes.clone(),
        }
    }
}

// Debug function for DoublyLinkedList
impl<V> Debug for DoublyLinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Displays debug information for this 'doubly linked list'.
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("DoublyLinkedList")
            .field("circular", &self.circular)
            .field("nodes", &self.nodes)
            .finish()
    }
}

// Empty function for DoublyLinkedList
impl<V> Empty for DoublyLinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Returns true if this 'doubly linked list' is empty.
    fn is_empty(&self) -> bool { self.nodes.is_empty() }
}

// Index function for DoublyLinkedList
impl<V> Index<usize> for DoublyLinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Output type.
    type Output = V;

    /// Returns the data value of the 'node' at the specified index.
    ///
    /// # Panics
    ///
    /// This function panics if the index is out-of-bounds.
    fn index(&self, index: usize) -> &Self::Output {
        if index >= self.nodes.len() {
            panic!("Cannot return node data due to out-of-bounds index.");
        }

        &self.nodes[index].pair.value
    }
}

// IndexMut function for DoublyLinkedList
impl<V> IndexMut<usize> for DoublyLinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Returns the data value of the 'node' at the specified index.
    ///
    /// # Panics
    ///
    /// This function panics if the index is out-of-bounds.
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        if index >= self.nodes.len() {
            panic!("Cannot return node data due to out-of-bounds index.");
        }

        &mut self.nodes[index].pair.value
    }
}

// IntoIterator function for DoublyLinkedList
impl<V> IntoIterator for DoublyLinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Item type.
    type Item = KeyValue<usize, V>;

    /// IntoIter type.
    type IntoIter = alloc::vec::IntoIter<KeyValue<usize, V>>;

    /// Converts this 'doubly linked list' into an 'iterator'.
    fn into_iter(self) -> Self::IntoIter {
        let mut vec: Vec<KeyValue<usize, V>> = Vec::new();

        for i in 0..self.nodes.len() {
            vec.push(self.nodes[i].pair.clone());
        }

        vec.into_iter()
    }
}

// IntoTraverser function for DoublyLinkedList
impl<V> IntoTraverser<usize> for DoublyLinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Item type.
    type Item = V;
    /// Traverser type.
    type IntoTrav = DoublyLinkedListTraverser<V>;

    /// Creates a 'traverser' from a value.
    fn into_trav(self) -> Self::IntoTrav {
        DoublyLinkedListTraverser {
            key: Some(self.nodes[0].pair.key.clone()),
            list: self,
        }
    }
}

// Len function for DoublyLinkedList
impl<V> Len for DoublyLinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Returns the length of this 'doubly linked list'.
    fn len(&self) -> usize { self.nodes.len() }
}

// PartialEq function for DoublyLinkedList
impl<V> PartialEq for DoublyLinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Returns true if this 'doubly linked list' is equal to the specified 'doubly linked list',
    /// meaning they contain the same elements in the same order.
    fn eq(&self, other: &Self) -> bool {
        // If lengths do not match, return false.
        if self.len() != other.len() {
            return false;
        }

        // If a key or a value does not match, return false.
        for i in 0..self.len() {
            if self.nodes[i].pair.key != other.nodes[i].pair.key ||
                self.nodes[i].pair.value != other.nodes[i].pair.value {
                return false;
            }
        }

        true
    }
}

// Reversible function for DoublyLinkedList
impl<V> Reversible for DoublyLinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// Returns a copy of this 'doubly linked list' in reverse order.
    fn reverse(&mut self) -> Self {
        let mut rev: DoublyLinkedList<V> = DoublyLinkedList::new();

        rev.circular = self.circular;

        for i in 0..self.len() {
            rev.prepend(self.nodes[i].pair.value.clone());
        }

        rev
    }
}

// Collection functions for DoublyLinkedList
impl<V> Collection for DoublyLinkedList<V>
    where
        V: Clone + Debug + PartialEq + PartialOrd,
{
    /// The element type.
    type Element = KeyValue<usize, V>;

    /// Returns the capacity of this 'doubly linked list'.
    fn capacity(&self) -> usize { self.len() }

    /// Returns true if this 'linked list' contains the specified item.
    fn contains(&self, item: &Self::Element) -> bool {
        // If a key and value match item's key and value, return true.
        for i in 0..self.len() {
            if self.nodes[i].pair == *item {
                return true;
            }
        }

        false
    }

    /// Returns true if this 'linked list' contains the specified vector.
    fn contains_all(&self, vec: &Vec<Self::Element>) -> bool {
        for i in vec.into_iter() {
            if !self.contains(i) {
                return false;
            }
        }

        true
    }

    /// Returns this 'linked list' as a 'vector'.
    fn to_vec(&self) -> Vec<Self::Element> {
        let mut vec: Vec<Self::Element> = Vec::new();

        for i in 0..self.len() {
            vec.push(self.nodes[i].pair.clone());
        }

        vec
    }
}

// MapCollection functions for DoublyLinkedList
impl<V> MapCollection<usize, V> for DoublyLinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Returns true if the specified key exists.
    fn exists(&self, key: usize) -> bool { key < self.nodes.len() }

    /// Returns the value associated with the specified key, or None if the key does not exist.
    fn get(&self, key: usize) -> Option<&V> {
        if key >= self.nodes.len() {
            return None;
        }

        Some(&self.nodes[key].pair.value)
    }

    /// Inserts a new 'node' with the specified key and data value into this 'linked list'. Returns
    /// true if successful.
    fn insert(&mut self, pair: KeyValue<usize, V>) -> bool {
        // insert a new node at the specified index (pair.0) with the specified data (pair.1).
        self.nodes.insert(pair.key.clone(), Node {
            pair: pair.clone(),
            links: Vec::new(),
        });

        // Add an empty (None) next and previous link to the new node.
        self.nodes[pair.key.clone()].links.push(None);
        self.nodes[pair.key.clone()].links.push(None);

        // Update all node's links.
        for i in 0..self.len() {
            // If on the first node.
            if i == 0 {
                // If the linked list is circular, set previous link to the last node.
                if self.is_circular() {
                    self.nodes[i].links[1] = Some(self.len() - 1);
                }
                // If the linked list is not circular, set previous link to None.
                else {
                    self.nodes[i].links[1] = None;
                }
            }
            // If not on the first node, set previous link to previous node.
            else {
                self.nodes[i].links[1] = Some(i - 1);
            }

            // If not on the last node, set next link to the next node.
            if i < self.len() - 1 {
                self.nodes[i].links[0] = Some(i + 1);
            }
            // If on the last node.
            else {
                // If the linked list is circular, set next link to the first node.
                if self.is_circular() {
                    self.nodes[i].links[0] = Some(0);
                }
                // If the linked list is not circular, set next link to None.
                else {
                    self.nodes[i].links[0] = None;
                }
            }

            // Set the key of each node to the current index (i).
            self.nodes[i].pair.key = i;
        }

        true
    }

    /// Removes the 'node' with the specified key, if it exists. Returns true if successful. Returns
    /// false if no 'node' with the specified key exists.
    fn remove(&mut self, key: usize) -> bool {
        // If key is out-of-bounds, return false.
        if key >= self.nodes.len() {
            return false;
        }

        // Remove the node with the specified key.
        self.nodes.remove(key);

        // Update all node's links.
        for i in 0..self.len() {
            // If on the first node.
            if i == 0 {
                // If the linked list is circular, set previous link to the last node.
                if self.is_circular() {
                    self.nodes[i].links[1] = Some(self.len() - 1);
                }
                // If the linked list is not circular, set previous link to None.
                else {
                    self.nodes[i].links[1] = None;
                }
            }
            // If not on the first node, set previous link to previous node.
            else {
                self.nodes[i].links[1] = Some(i - 1);
            }

            // If not on the last node, set next link to the next node.
            if i < self.len() - 1 {
                self.nodes[i].links[0] = Some(i + 1);
            }
            // If on the last node.
            else {
                // If the linked list is circular, set next link to the first node.
                if self.is_circular() {
                    self.nodes[i].links[0] = Some(0);
                }
                // If the linked list is not circular, set next link to None.
                else {
                    self.nodes[i].links[0] = None;
                }
            }
        }

        true
    }

    /// Replaces the value of the 'node' with the specified key with the specified value. Returns
    /// true if successful. Returns false if the specified key does not exist.
    fn replace(&mut self, pair: KeyValue<usize, V>) -> bool {
        // If the specified key (pair.0) is out-of-bounds, return false.
        if pair.key >= self.nodes.len() {
            return false;
        }

        // Set the data of the node with the specified key (pair.0) to the specified value (pair.1).
        self.nodes[pair.key.clone()].pair.value = pair.value.clone();

        true
    }
}

// TraversableCollection functions for DoublyLinkedList
impl<V> TraversableCollection<usize, V> for DoublyLinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Edge type.
    type EdgeType = Edge<usize, false, false>;

    /// Returns the degree of the 'node' with the specified key, or returns -1 if no such 'node'
    /// with that key exists. The degree of a 'node' is the number of 'nodes' it is connected to.
    fn degree_of(&self, key: usize) -> isize {
        if key >= self.nodes.len() {
            return -1;
        }

        self.nodes[key].links.len() as isize
    }

    /// Returns the diameter of this 'doubly linked list'. The diameter of a 'linked list' is the
    /// longest path from one 'node' to another 'node', therefore equivalent to the length of the
    /// 'doubly linked list'.
    fn diameter(&self) -> f32 { self.len() as f32 }

    /// Returns a list of the 'edges' in the 'doubly linked list'.
    fn edge_list(&self) -> Vec<Self::EdgeType> {
        let mut vec: Vec<Edge<usize, false, false>> = Vec::new();

        for i in 0..self.nodes.len() {
            if self.nodes[i].links[1].is_some() {
                vec.push(Edge {
                    node_a: self.nodes[i].pair.key.clone(),
                    node_b: self.nodes[i].links[1].clone().unwrap().clone(),
                    weight: 1.0,
                })
            }
        }

        vec
    }

    /// Returns the number of edges in this 'traversable collection'.
    fn edges(&self) -> usize { self.nodes.len() - 1 }

    /// Returns true if the 'doubly linked list' has a cycle within it. A cycle is where 'nodes' are
    /// connected together in a circular path.
    fn has_cycle(&self) -> bool { self.is_circular() }

    /// Returns true if this 'doubly linked list' is a bipartite 'graph'. A bipartite 'graph' is
    /// a graph that can be divided into two disjoint sets with no 'node' in either set connected
    /// to a 'node' in the same set. If this 'doubly linked list' is not circular or if it is and
    /// has an even number of 'nodes', this returns false.
    fn is_bipartite(&self) -> bool { !self.is_circular() || (self.len() % 2 == 0) }

    /// Returns true if every 'node' in this 'doubly linked list' is connected to at least one
    /// other 'node'. This always returns true for 'doubly linked lists'.
    fn is_connected(&self) -> bool { true }

    /// Returns true if the 'node' with the second specified key is a neighbor of the 'node'
    /// with the first specified key. If either key does not belong to an existing 'node', or the
    /// two 'nodes' are not neighbors, this returns false. A 'node' neighbor is a 'node' that is
    /// directly linked to the other 'node'.
    fn is_neighbor(&self, key_a: usize, key_b: usize) -> bool {
        // If keys are valid and the keys are next to each other in the linked list, return true.
        (key_a < self.nodes.len() && key_b < self.nodes.len()) && (key_a - 1 == key_b || key_a + 1 == key_b)
    }

    /// Returns a 'doubly linked list' containing the path from the first specified key to the
    /// second specified key. Returns None if there is no path. The path contains the key/value
    /// pairs of each 'node' in the path and is stored in order from key_a at the start to
    /// key_b at the end.
    fn path_of(&mut self, key_a: usize, key_b: usize) -> Option<DoublyLinkedList<KeyValue<usize, V>>> {
        // If key_a and key_b are valid.
        if key_a < self.nodes.len() && key_b < self.nodes.len() {
            let mut path: DoublyLinkedList<KeyValue<usize, V>> = DoublyLinkedList::new();

            // Store the key/value pairs for each node from key_a to key_b
            if key_a <= key_b {
                for i in key_a..(key_b + 1) {
                    path.insert(
                        KeyValue {
                            key: i - key_a,
                            value: self.nodes[i].pair.clone()
                        });
                }
            }
            else {
                for i in (key_b..(key_a + 1)).rev() {
                    path.insert(
                        KeyValue {
                            key: i - key_b,
                            value: self.nodes[i].pair.clone()
                        });
                }
            }

            return Some(path);
        }

        // Return None if no path from key_a to key_b was found.
        None
    }
}

// LinkedCollection functions for DoublyLinkedList
impl<V> LinkedCollection<usize, V> for DoublyLinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Appends a 'node' with the specified value to the back of this 'doubly linked list'.
    fn append(&mut self, value: V) {
        self.insert( KeyValue { key: self.len(), value } );
    }

    /// Sets whether this 'doubly linked list' is circular or not.
    fn circular(&mut self, c: bool) {
        // If the linked list's circular state does not match the specified state (c).
        if self.circular != c {
            // Set linked list circular state to c.
            self.circular = c;

            let len: usize = self.len();

            // If linked list is now circular, set next link of last node to point to the first node,
            // and set the previous link of the first node to point to the last node.
            if self.circular {
                self.nodes[len - 1].links[1] = Some(self.nodes[0].pair.key.clone());
                self.nodes[0].links[0] = Some(self.nodes[len - 1].pair.key.clone());
            }
            // If linked list is now not circular, set next link of last node to None, and set the
            // the previous link of the first node to None.
            else {
                self.nodes[len - 1].links[1] = None;
                self.nodes[0].links[0] = None;
            }
        }
    }

    /// Returns true if this 'doubly linked list' has the specified value.
    fn has_value(&self, value: V) -> bool {
        // If a node's data matches value, return true.
        for i in 0..self.len() {
            if self.nodes[i].pair.value == value {
                return true;
            }
        }

        false
    }

    /// Returns true if this 'doubly linked list' is circular.
    fn is_circular(&self) -> bool { self.circular }

    /// Prepends a 'node' with the specified value to the front of this 'doubly linked list'.
    fn prepend(&mut self, value: V) { self.insert(KeyValue { key: 0, value }); }
}

// DoublyLinkedList functions
impl<V> DoublyLinkedList<V>
    where
        V: PartialEq + PartialOrd + Clone + Debug,
{
    /// Creates a new circular 'doubly linked list' that contains the elements in the specified
    /// vector.
    #[allow(dead_code)]
    pub fn circular_from_vec(v: &Vec<V>) -> Self {
        let mut list: DoublyLinkedList<V> = DoublyLinkedList::new_circular();
        let mut index: usize = 0;

        for i in v.into_iter() {
            list.insert(kv!(index, (i.clone())));
            index += 1;
        }

        list
    }

    /// Creates a new empty 'doubly linked list'.
    pub fn new() -> Self {
        DoublyLinkedList {
            circular: false,
            nodes: Vec::new(),
        }
    }

    /// Creates a new empty circular 'doubly linked list'.
    #[allow(dead_code)]
    pub fn new_circular() -> Self {
        DoublyLinkedList {
            circular: true,
            nodes: Vec::new(),
        }
    }

    /// Creates a new 'doubly linked list' that contains the elements in the specified vector.
    #[allow(dead_code)]
    pub fn from_vec(v: &Vec<V>) -> Self {
        let mut list: DoublyLinkedList<V> = DoublyLinkedList::new();
        let mut index: usize = 0;

        for i in v.into_iter() {
            list.insert(kv!(index, (i.clone())));
            index += 1;
        }

        list
    }
}