1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
use chacha20poly1305::{
aead::{Aead as _, Payload},
ChaCha20Poly1305, KeyInit as _,
};
use rand::{thread_rng, RngCore};
use secrecy::ExposeSecret as _;
use std::{collections::HashMap, fmt::Debug};
use super::{Error, Key, KeyId};
/// A secure symmetric encryption container, supporting key rotation and AAD contexts.
///
/// This is your basic, Mark 1 mod 0 [`StrongBox`]. Given an encryption key, it will
/// encrypt data all day long with a modern, fast cipher (ChaCha20) with integrity protection and
/// authenticated additional data (using Poly1305). If provided with one or more decryption keys,
/// it will decrypt data that was encrypted with *any* of those keys, giving you the ability to
/// "rotate" your key over time, by creating a new key, making it the new encryption key, and
/// keeping the old key in the set of "decryption" keys until such time as all data has been
/// re-encrypted with the new key.
///
/// The "authenticated additional data" is a mouthful, but what it means is that when you encrypt
/// data, you provide the encryption with a "context", such as the ID of the user that the
/// encrypted data belongs to. When you decrypt the data again, you provide the ID of the user the
/// data belongs to, and if they don't match, decryption fails. Why is that useful? Because if
/// an attacker gets write access to the database, and moves encrypted data from one user to
/// another, Bad Things can happen. [This Security StackExchange answer](https://security.stackexchange.com/a/179279/167630) is an excellent explanation of
/// why an encryption context is useful.
///
/// # Example
///
/// ```rust
/// # use strong_box::{Error, StrongBox};
/// fn main() -> Result<(), Error> {
///
/// // A couple of keys are always useful to have
/// let old_key = strong_box::generate_key();
/// let new_key = strong_box::generate_key();
///
/// let old_strongbox = StrongBox::new(old_key.clone(), [old_key]);
/// let new_strongbox = StrongBox::new(new_key.clone(), [new_key]);
/// // This StrongBox encrypts with `new_key`, but can decrypt ciphertexts
/// // encrypted with *either* `new_key` *or* `old_key`
/// let fallback_strongbox = StrongBox::new(new_key.clone(), vec![new_key, old_key]);
///
/// /////////////////////////////////////////////////////////
/// // A ciphertext encrypted using the old key
///
/// let ciphertext = old_strongbox.encrypt(b"Hello, old world!", b"some context")?;
///
/// // We'd *hope* that we can decrypt what we encrypted
/// assert_eq!(
/// b"Hello, old world!".to_vec(),
/// old_strongbox.decrypt(&ciphertext, b"some context")?
/// );
///
/// // A StrongBox that uses a different key won't be able to decrypt
/// let result = new_strongbox.decrypt(&ciphertext, b"some context");
/// assert!(matches!(result, Err(Error::Decryption)));
///
/// // Also, a StrongBox that uses the right key won't decrypt if the context isn't the
/// // same as was used to encrypt
/// let result = old_strongbox.decrypt(&ciphertext, b"a different context");
/// assert!(matches!(result, Err(Error::Decryption)));
///
/// // However, magic of magicks, the fallback StrongBox can do the job!
/// assert_eq!(
/// b"Hello, old world!".to_vec(),
/// fallback_strongbox.decrypt(&ciphertext, b"some context")?
/// );
///
/// //////////////////////////////////////////////////////////////
/// // Now, let's try a ciphertext encrypted using the new key
///
/// let ciphertext = new_strongbox.encrypt(b"Hello, new world!", b"new context")?;
///
/// // Again, the same StrongBox should be able to decrypt
/// assert_eq!(
/// b"Hello, new world!".to_vec(),
/// new_strongbox.decrypt(&ciphertext, b"new context")?
/// );
///
/// // Unsurprisingly, the fallback StrongBox can decrypt it too, as it uses the same key
/// assert_eq!(
/// b"Hello, new world!".to_vec(),
/// fallback_strongbox.decrypt(&ciphertext, b"new context")?
/// );
///
/// // A StrongBox using just the old key won't be able to decrypt, though
/// let result = old_strongbox.decrypt(&ciphertext, b"new context");
/// assert!(matches!(result, Err(Error::Decryption)));
///
/// // And again, the right StrongBox but the wrong context won't decrypt
/// let result = new_strongbox.decrypt(&ciphertext, b"some other context");
/// assert!(matches!(result, Err(Error::Decryption)));
/// # Ok(())
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct StrongBox {
encryption_key: Key<[u8; 32]>,
encryption_key_id: KeyId,
decryption_keys: HashMap<KeyId, Key<[u8; 32]>>,
}
impl StrongBox {
/// Create a new [`StrongBox`].
#[tracing::instrument(level = "debug", skip(enc_key, dec_keys))]
pub fn new(
enc_key: impl Into<Key<[u8; 32]>>,
dec_keys: impl IntoIterator<Item = impl Into<Key<[u8; 32]>>>,
) -> Self {
let mut key_map: HashMap<KeyId, Key<[u8; 32]>> = HashMap::default();
for key in dec_keys.into_iter() {
let key = key.into();
let key_id = super::key_id(&key);
tracing::debug!(%key_id, "Including decryption key");
key_map.insert(key_id, key);
}
let enc_key = enc_key.into();
let enc_key_id = super::key_id(&enc_key);
tracing::debug!("Encryption key is {enc_key_id}");
Self {
encryption_key_id: enc_key_id,
encryption_key: enc_key,
decryption_keys: key_map,
}
}
/// Just like [`StrongBox::encrypt_secret`], but for data that isn't already protected by [`secrecy::Secret`].
#[tracing::instrument(level = "debug", skip(plaintext))]
pub fn encrypt(
&self,
plaintext: impl Into<Vec<u8>>,
ctx: impl AsRef<[u8]> + Debug,
) -> Result<Vec<u8>, Error> {
self.encrypt_secret(Key::new(plaintext.into()), ctx.as_ref())
}
/// Encrypt secret data using the [`StrongBox`]'s encryption key, within the [`StrongBox`]'s specified context.
///
/// # Errors
///
/// Will return [`Error::Encryption`] or [`Error::Encoding`] in the (extremely
/// unlikely) event something goes horribly wrong.
#[tracing::instrument(level = "debug", skip(plaintext))]
pub fn encrypt_secret(
&self,
plaintext: impl Into<Key<Vec<u8>>>,
ctx: impl AsRef<[u8]> + Debug,
) -> Result<Vec<u8>, Error> {
let cipher = ChaCha20Poly1305::new((self.encryption_key.expose_secret()).into());
let mut rng = thread_rng();
let mut nonce = [0u8; 12];
rng.fill_bytes(&mut nonce);
let mut aad = Vec::<u8>::new();
aad.extend_from_slice(ctx.as_ref());
aad.extend_from_slice(self.encryption_key_id.as_bytes());
aad.extend_from_slice(&nonce);
let ciphertext = cipher
.encrypt(
(&nonce).into(),
Payload {
msg: plaintext.into().expose_secret(),
aad: &aad,
},
)
.map_err(|_| Error::Encryption)?;
tracing::debug!(key_id=%self.encryption_key_id, "Encrypting");
Ciphertext::new(self.encryption_key_id, nonce, ciphertext).to_bytes()
}
/// Decrypt a ciphertext, using any key the [`StrongBox`] knows, and validate that ciphertext
/// was encrypted with the specified context.
///
/// # Errors
///
/// Will return [`Error::Decryption`] if the ciphertext was encrypted with a different
/// key, or a different context. A malformed ciphertext will return [`Error::Decoding`].
#[tracing::instrument(level = "debug", skip(ciphertext))]
pub fn decrypt(
&self,
ciphertext: impl AsRef<[u8]>,
ctx: impl AsRef<[u8]> + Debug,
) -> Result<Vec<u8>, Error> {
let ciphertext = Ciphertext::try_from(ciphertext.as_ref())?;
self.decrypt_ciphertext(&ciphertext, ctx.as_ref())
}
pub(crate) fn decrypt_ciphertext(
&self,
ciphertext: &Ciphertext,
ctx: &[u8],
) -> Result<Vec<u8>, Error> {
if let Some(key) = self.decryption_keys.get(&ciphertext.key_id) {
tracing::debug!(key_id=%ciphertext.key_id, "Decrypting");
let mut aad = Vec::<u8>::new();
aad.extend_from_slice(ctx.as_ref());
aad.extend_from_slice(ciphertext.key_id.as_bytes());
aad.extend_from_slice(&ciphertext.nonce);
let cipher = ChaCha20Poly1305::new(key.expose_secret().into());
let payload = Payload {
msg: &ciphertext.ciphertext,
aad: &aad,
};
cipher
.decrypt((&ciphertext.nonce[..]).into(), payload)
.map_err(|_| Error::Decryption)
} else {
tracing::debug!(key_id=%ciphertext.key_id, "Decryption key not found");
Err(Error::Decryption)
}
}
}
// This makes more sense in base64
const CIPHERTEXT_MAGIC: [u8; 3] = [0xb1, 0xb8, 0xf5];
#[derive(Clone, Debug)]
pub(crate) struct Ciphertext {
pub(crate) key_id: KeyId,
pub(crate) nonce: [u8; 12],
pub(crate) ciphertext: Vec<u8>,
}
impl Ciphertext {
pub(crate) fn new(key_id: KeyId, nonce: [u8; 12], ciphertext: Vec<u8>) -> Self {
Self {
key_id,
nonce,
ciphertext,
}
}
pub(crate) fn to_bytes(&self) -> Result<Vec<u8>, Error> {
use ciborium_ll::{Encoder, Header};
let mut v: Vec<u8> = Vec::new();
v.extend_from_slice(&CIPHERTEXT_MAGIC);
let mut enc = Encoder::from(&mut v);
enc.push(Header::Array(Some(3)))
.map_err(|e| Error::encoding("key_id", e))?;
self.key_id.encode(&mut enc)?;
enc.bytes(&self.nonce, None)
.map_err(|e| Error::encoding("nonce", e))?;
enc.bytes(&self.ciphertext, None)
.map_err(|e| Error::encoding("ciphertext", e))?;
tracing::debug!(
nonce = self
.nonce
.iter()
.map(|i| format!("{i:02x}"))
.collect::<Vec<_>>()
.join(""),
ct = self
.ciphertext
.iter()
.map(|i| format!("{i:02x}"))
.collect::<Vec<_>>()
.join(""),
"{}",
v.iter()
.map(|i| format!("{i:02x}"))
.collect::<Vec<_>>()
.join("")
);
Ok(v)
}
}
impl TryFrom<&[u8]> for Ciphertext {
type Error = Error;
fn try_from(b: &[u8]) -> Result<Self, Self::Error> {
use ciborium_ll::{Decoder, Header};
if b.len() < 21 {
return Err(Error::invalid_ciphertext("too short"));
}
if b[0..3] != CIPHERTEXT_MAGIC {
tracing::debug!(magic=?CIPHERTEXT_MAGIC, actual=?b[0..3]);
return Err(Error::invalid_ciphertext("incorrect magic"));
}
let mut dec = Decoder::from(&b[3..]);
let Header::Array(Some(3)) = dec.pull().map_err(|e| Error::decoding("array", e))? else {
return Err(Error::invalid_ciphertext("expected array"));
};
let key_id = KeyId::decode(&mut dec)?;
// CBOR's great, until you have to deal with segmented bytestrings...
let Header::Bytes(len) = dec.pull().map_err(|e| Error::decoding("nonce header", e))? else {
return Err(Error::invalid_ciphertext("expected nonce"));
};
let mut segments = dec.bytes(len);
let Ok(Some(mut segment)) = segments.pull() else {
return Err(Error::invalid_ciphertext("bad nonce"));
};
let mut buf = [0u8; 1024];
let mut nonce = [0u8; 12];
if let Some(chunk) = segment
.pull(&mut buf[..])
.map_err(|e| Error::decoding("nonce", e))?
{
// Is this necessary? Probably better to be safe than sorry
nonce[..].copy_from_slice(chunk);
} else {
return Err(Error::invalid_ciphertext("short nonce"));
}
// ibid.
let Header::Bytes(len) = dec
.pull()
.map_err(|e| Error::decoding("ciphertext header", e))?
else {
return Err(Error::invalid_ciphertext("expected ciphertext"));
};
let mut segments = dec.bytes(len);
let Ok(Some(mut segment)) = segments.pull() else {
return Err(Error::invalid_ciphertext("bad ciphertext"));
};
let mut ciphertext: Vec<u8> = Vec::new();
while let Some(chunk) = segment
.pull(&mut buf[..])
.map_err(|e| Error::decoding("ciphertext", e))?
{
ciphertext.extend_from_slice(chunk);
}
Ok(Self {
key_id,
nonce,
ciphertext,
})
}
}