1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
use image::{
imageops::{resize, FilterType},
GenericImage, GenericImageView, GrayImage, ImageBuffer, Luma, Pixel, RgbImage,
};
use imageproc::{definitions::Image, edges, gradients};
use num_traits::{NumCast, Pow, ToPrimitive};
#[derive(Debug)]
struct Directions {
x: Image<Luma<f32>>,
y: Image<Luma<f32>>,
}
#[derive(Debug, Copy, Clone, Default, PartialEq, Eq)]
struct Position {
x: u32,
y: u32,
}
type Ray = Vec<Position>;
pub struct StrokeWidthTransform {
one_over_gamma: f32,
dark_on_bright: bool,
canny_low: f32,
canny_high: f32,
}
impl Default for StrokeWidthTransform {
fn default() -> Self {
let gamma = 2.2;
Self {
one_over_gamma: 1.0 / gamma,
dark_on_bright: true,
canny_low: 20.,
canny_high: 75.,
}
}
}
impl StrokeWidthTransform {
pub fn default_bright_on_dark() -> Self {
Self {
dark_on_bright: false,
..Self::default()
}
}
/// Applies the Stroke Width Transformation to the image.
pub fn apply(&self, img: &RgbImage) -> GrayImage {
let gray = self.gleam(img);
// Temporarily increase the image size for edge detection to work (better).
let gray = Self::double_the_size(gray);
let edges = self.get_edges(&gray);
let directions = self.get_gradient_directions(&gray);
// The grayscale image is not required anymore; we can free some memory.
drop(gray);
let swt = self.transform(edges, directions);
swt
}
fn transform(&self, edges: GrayImage, directions: Directions) -> GrayImage {
let mut rays: Vec<Ray> = Vec::new();
let (width, height) = edges.dimensions();
let mut swt: Image<Luma<u32>> = ImageBuffer::new(width, height);
for y in 0..height {
for x in 0..width {
let edge = unsafe { edges.unsafe_get_pixel(x, y) };
// TODO: Verify edge value range, should be either 0 or 255.
if edge[0] < 128 {
continue;
}
if let Some(ray) =
self.process_pixel(Position { x, y }, &edges, &directions, &mut swt)
{
rays.push(ray);
}
}
}
let swt = convert_u32_to_u8_img(swt);
// Next-generation println! debugging:
// swt.save("swt-out.jpg");
swt
}
/// Obtains the stroke width starting from the specified position.
fn process_pixel(
&self,
pos: Position,
edges: &GrayImage,
directions: &Directions,
swt: &mut Image<Luma<u32>>,
) -> Option<Ray> {
// Keep track of the image dimensions for boundary tests.
let (width, height) = edges.dimensions();
// The direction in which we travel the gradient depends on the type of text
// we want to find. For dark text on light background, follow the opposite
// direction (into the dark are); for light text on dark background, follow
// the gradient as is.
let gradient_direction: f32 = if self.dark_on_bright { -1. } else { 1. };
// Starting from the current pixel we will shoot a ray into the direction
// of the pixel's gradient and keep track of all pixels in that direction
// that still lie on an edge.
let mut ray = Vec::new();
ray.push(pos);
// Obtain the direction to step into.
// TODO: Obtain arctan of directions initially, then obtain dir_x and dir_y using cos and sin here.
// See below for another use of the directions.
let dir_x = unsafe { directions.x.unsafe_get_pixel(pos.x, pos.y) }[0];
let dir_y = unsafe { directions.y.unsafe_get_pixel(pos.x, pos.y) }[0];
// Since some pixels have no gradient, normalization of the gradient
// is a division by zero for them, resulting in NaN. These values
// should not bother us since we explicitly tested for an edge before.
debug_assert!(!dir_x.is_nan());
debug_assert!(!dir_y.is_nan());
// Traverse the pixels along the direction.
let mut prev_pos = Position { x: 0, y: 0 };
let mut steps_taken: usize = 0;
loop {
// Advance to the next pixel on the line.
steps_taken += 1;
let cur_x =
(pos.x as f32 + gradient_direction * dir_x * steps_taken as f32).floor() as i64;
let cur_y =
(pos.y as f32 + gradient_direction * dir_y * steps_taken as f32).floor() as i64;
// If we reach the edge of the image without crossing a stroke edge,
// we discard the result.
if (cur_x < 0 || cur_x >= width as _) || (cur_y < 0 || cur_y >= height as _) {
return None;
}
// The cast is safe because we know the position lies within the image range.
let cur_x = cur_x as u32;
let cur_y = cur_y as u32;
// If the step width was too small, continue;
let cur_pos = Position { x: cur_x, y: cur_y };
if cur_pos == prev_pos {
continue;
}
prev_pos = cur_pos;
// The point is either on the line or the end of it, so we register it.
ray.push(cur_pos);
// If that pixel is not an edge, we are still on the line and
// need to continue scanning.
let edge = unsafe { edges.unsafe_get_pixel(cur_x, cur_y) }[0];
// TODO: Verify edge value range, should be either 0 or 255.
if edge < 128 {
continue;
}
// If this edge is pointed in a direction approximately opposite of the
// one we started in, it is approximately parallel. This means we
// just found the other side of the stroke.
// The original paper suggests the gradients need to be opposite +/- PI/6.
// Since the dot product is the cosine of the enclosed angle and
// cos(pi/6) = 0.8660254037844387, we can discard all values that exceed
// this threshold.
// TODO: arctan + cos and sin.
let cur_dir_x = unsafe { directions.x.unsafe_get_pixel(cur_x, cur_y) }[0];
let cur_dir_y = unsafe { directions.y.unsafe_get_pixel(cur_x, cur_y) }[0];
let dot_product = dir_x * cur_dir_x + dir_y * cur_dir_y;
if dot_product >= -0.866 {
return None;
}
// Paint each of the pixels on the ray with their determined stroke width.
let delta_x = cur_pos.x as i64 - pos.x as i64;
let delta_y = cur_pos.y as i64 - pos.y as i64;
let stroke_width = ((delta_x * delta_x + delta_y * delta_y) as f32)
.sqrt()
.floor() as u32;
for p in ray.iter() {
unsafe {
swt.unsafe_put_pixel(p.x, p.y, [stroke_width].into());
}
}
return Some(ray);
}
}
/// Doubles the size of the image.
/// This is a workaround for the fact that we don't have control over the Gaussian filter
/// kernel size in `edges::canny`. Because we do know that blurring is applied, we
/// apply simple filtering only when up-sampling.
fn double_the_size(img: GrayImage) -> GrayImage {
let (width, height) = img.dimensions();
resize(&img, width * 2, height * 2, FilterType::Triangle)
}
/// Opposite of `double_the_size`
#[allow(unused)]
fn halve_the_size<I>(img: Image<I>) -> Image<I>
where
I: Pixel + 'static,
{
let (width, height) = img.dimensions();
resize(&img, width / 2, height / 2, FilterType::Gaussian)
}
/// Detects edges.
fn get_edges(&self, img: &GrayImage) -> GrayImage {
edges::canny(&img, self.canny_low, self.canny_high)
}
/// Detects image gradients.
fn get_gradient_directions(&self, img: &GrayImage) -> Directions {
let grad_x = gradients::horizontal_scharr(&img);
let grad_y = gradients::vertical_scharr(&img);
let (width, height) = img.dimensions();
debug_assert_eq!(width, grad_x.dimensions().0);
debug_assert_eq!(height, grad_x.dimensions().1);
let mut out_x: Image<Luma<f32>> = ImageBuffer::new(width, height);
let mut out_y: Image<Luma<f32>> = ImageBuffer::new(width, height);
for y in 0..height {
for x in 0..width {
let gx = unsafe { grad_x.unsafe_get_pixel(x, y) };
let gy = unsafe { grad_y.unsafe_get_pixel(x, y) };
let gx = gx[0].to_f32().unwrap();
let gy = gy[0].to_f32().unwrap();
let inv_norm = 1. / (gx * gx + gy * gy).sqrt();
let gx = gx * inv_norm;
let gy = gy * inv_norm;
unsafe {
out_x.unsafe_put_pixel(x, y, [gx].into());
out_y.unsafe_put_pixel(x, y, [gy].into());
}
}
}
Directions { x: out_x, y: out_y }
}
/// Implements Gleam grayscale conversion from
/// Kanan & Cottrell 2012: "Color-to-Grayscale: Does the Method Matter in Image Recognition?"
/// http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029740
fn gleam(&self, image: &RgbImage) -> GrayImage {
let (width, height) = image.dimensions();
let mut out: ImageBuffer<Luma<u8>, Vec<u8>> = ImageBuffer::new(width, height);
for y in 0..height {
for x in 0..width {
let rgb = unsafe { image.unsafe_get_pixel(x, y) };
let r = self.gamma(u8_to_f32(rgb[0]));
let g = self.gamma(u8_to_f32(rgb[1]));
let b = self.gamma(u8_to_f32(rgb[2]));
let l = mean(r, g, b);
let p = f32_to_u8(l);
unsafe { out.unsafe_put_pixel(x, y, [p].into()) }
}
}
out
}
/// Applies a gamma transformation to the input.
#[inline]
fn gamma(&self, x: f32) -> f32 {
x.pow(self.one_over_gamma)
}
}
#[inline]
fn u8_to_f32(x: u8) -> f32 {
const SCALE_U8_TO_F32: f32 = 1.0 / 255.0;
x.to_f32().unwrap() * SCALE_U8_TO_F32
}
#[inline]
fn f32_to_u8(x: f32) -> u8 {
const SCALE_F32_TO_U8: f32 = 255.0;
NumCast::from((x * SCALE_F32_TO_U8).clamp(0.0, 255.0)).unwrap()
}
#[inline]
fn mean(r: f32, g: f32, b: f32) -> f32 {
const ONE_THIRD: f32 = 1.0 / 3.0;
(r + g + b) * ONE_THIRD
}
/// Helper function to map u32 value range to u8 value range.
fn convert_u32_to_u8_img(image: Image<Luma<u32>>) -> GrayImage {
let (width, height) = image.dimensions();
let mut out: GrayImage = ImageBuffer::new(width, height);
let max_value = image.pixels().fold(0u32, |max, px| max.max(px[0]));
let scaler = if max_value > 0 {
255. / (max_value as f32)
} else {
0.
};
for y in 0..height {
for x in 0..width {
let pixel = unsafe { image.unsafe_get_pixel(x, y) };
let v = pixel[0].to_f32().unwrap();
let scaled = (v * scaler).to_u8().unwrap();
unsafe { out.unsafe_put_pixel(x, y, [scaled].into()) }
}
}
out
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn u8_to_f32_works() {
assert_eq!(u8_to_f32(0), 0.);
assert_eq!(u8_to_f32(255), 1.);
}
#[test]
fn f32_to_u8_works() {
assert_eq!(f32_to_u8(1.0), 255);
assert_eq!(f32_to_u8(2.0), 255);
assert_eq!(f32_to_u8(-1.0), 0);
}
#[test]
fn gamma_works() {
let swt = StrokeWidthTransform {
one_over_gamma: 2.,
..StrokeWidthTransform::default()
};
assert_eq!(swt.gamma(1.0), 1.0);
assert_eq!(swt.gamma(2.0), 4.0);
}
#[test]
fn mean_works() {
assert_eq!(mean(-1., 0., 1.), 0.);
assert_eq!(mean(1., 2., 3.), 2.);
assert_eq!(mean(0., 0., 1.), 1. / 3.);
}
}