1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
#![cfg_attr(not(test), no_std)]
/// The `sz` module provides a collection of string searching and manipulation functionality,
/// designed for high efficiency and compatibility with no_std environments. This module offers
/// various utilities for byte string manipulation, including search, reverse search, and
/// edit-distance calculations, suitable for a wide range of applications from basic string
/// processing to complex text analysis tasks.
pub mod sz {
use core::ffi::c_void;
// Import the functions from the StringZilla C library.
extern "C" {
fn sz_find(
haystack: *const c_void,
haystack_length: usize,
needle: *const c_void,
needle_length: usize,
) -> *const c_void;
fn sz_rfind(
haystack: *const c_void,
haystack_length: usize,
needle: *const c_void,
needle_length: usize,
) -> *const c_void;
fn sz_find_char_from(
haystack: *const c_void,
haystack_length: usize,
needle: *const c_void,
needle_length: usize,
) -> *const c_void;
fn sz_rfind_char_from(
haystack: *const c_void,
haystack_length: usize,
needle: *const c_void,
needle_length: usize,
) -> *const c_void;
fn sz_find_char_not_from(
haystack: *const c_void,
haystack_length: usize,
needle: *const c_void,
needle_length: usize,
) -> *const c_void;
fn sz_rfind_char_not_from(
haystack: *const c_void,
haystack_length: usize,
needle: *const c_void,
needle_length: usize,
) -> *const c_void;
fn sz_edit_distance(
haystack1: *const c_void,
haystack1_length: usize,
haystack2: *const c_void,
haystack2_length: usize,
bound: usize,
allocator: *const c_void,
) -> usize;
fn sz_edit_distance_utf8(
haystack1: *const c_void,
haystack1_length: usize,
haystack2: *const c_void,
haystack2_length: usize,
bound: usize,
allocator: *const c_void,
) -> usize;
fn sz_hamming_distance(
haystack1: *const c_void,
haystack1_length: usize,
haystack2: *const c_void,
haystack2_length: usize,
bound: usize,
) -> usize;
fn sz_hamming_distance_utf8(
haystack1: *const c_void,
haystack1_length: usize,
haystack2: *const c_void,
haystack2_length: usize,
bound: usize,
) -> usize;
fn sz_alignment_score(
haystack1: *const c_void,
haystack1_length: usize,
haystack2: *const c_void,
haystack2_length: usize,
matrix: *const c_void,
gap: i8,
allocator: *const c_void,
) -> isize;
// type RandomGeneratorT = fn(*mut c_void) -> u64;
fn sz_generate(
alphabet: *const c_void,
alphabet_size: usize,
text: *mut c_void,
length: usize,
generate: *const c_void,
generator: *mut c_void,
);
}
/// Locates the first matching substring within `haystack` that equals `needle`.
/// This function is similar to the `memmem()` function in LibC, but, unlike `strstr()`,
/// it requires the length of both haystack and needle to be known beforehand.
///
/// # Arguments
///
/// * `haystack`: The byte slice to search.
/// * `needle`: The byte slice to find within the haystack.
///
/// # Returns
///
/// An `Option<usize>` representing the starting index of the first occurrence of `needle`
/// within `haystack` if found, otherwise `None`.
pub fn find<H, N>(haystack: H, needle: N) -> Option<usize>
where
H: AsRef<[u8]>,
N: AsRef<[u8]>,
{
let haystack_ref = haystack.as_ref();
let needle_ref = needle.as_ref();
let haystack_pointer = haystack_ref.as_ptr() as _;
let haystack_length = haystack_ref.len();
let needle_pointer = needle_ref.as_ptr() as _;
let needle_length = needle_ref.len();
let result = unsafe {
sz_find(
haystack_pointer,
haystack_length,
needle_pointer,
needle_length,
)
};
if result.is_null() {
None
} else {
Some(unsafe { result.offset_from(haystack_pointer) } as usize)
}
}
/// Locates the last matching substring within `haystack` that equals `needle`.
/// This function is useful for finding the most recent or last occurrence of a pattern
/// within a byte slice.
///
/// # Arguments
///
/// * `haystack`: The byte slice to search.
/// * `needle`: The byte slice to find within the haystack.
///
/// # Returns
///
/// An `Option<usize>` representing the starting index of the last occurrence of `needle`
/// within `haystack` if found, otherwise `None`.
pub fn rfind<H, N>(haystack: H, needle: N) -> Option<usize>
where
H: AsRef<[u8]>,
N: AsRef<[u8]>,
{
let haystack_ref = haystack.as_ref();
let needle_ref = needle.as_ref();
let haystack_pointer = haystack_ref.as_ptr() as _;
let haystack_length = haystack_ref.len();
let needle_pointer = needle_ref.as_ptr() as _;
let needle_length = needle_ref.len();
let result = unsafe {
sz_rfind(
haystack_pointer,
haystack_length,
needle_pointer,
needle_length,
)
};
if result.is_null() {
None
} else {
Some(unsafe { result.offset_from(haystack_pointer) } as usize)
}
}
/// Finds the index of the first character in `haystack` that is also present in `needles`.
/// This function is particularly useful for parsing and tokenization tasks where a set of
/// delimiter characters is used.
///
/// # Arguments
///
/// * `haystack`: The byte slice to search.
/// * `needles`: The set of bytes to search for within the haystack.
///
/// # Returns
///
/// An `Option<usize>` representing the index of the first occurrence of any byte from
/// `needles` within `haystack`, if found, otherwise `None`.
pub fn find_char_from<H, N>(haystack: H, needles: N) -> Option<usize>
where
H: AsRef<[u8]>,
N: AsRef<[u8]>,
{
let haystack_ref = haystack.as_ref();
let needles_ref = needles.as_ref();
let haystack_pointer = haystack_ref.as_ptr() as _;
let haystack_length = haystack_ref.len();
let needles_pointer = needles_ref.as_ptr() as _;
let needles_length = needles_ref.len();
let result = unsafe {
sz_find_char_from(
haystack_pointer,
haystack_length,
needles_pointer,
needles_length,
)
};
if result.is_null() {
None
} else {
Some(unsafe { result.offset_from(haystack_pointer) } as usize)
}
}
/// Finds the index of the last character in `haystack` that is also present in `needles`.
/// This can be used to find the last occurrence of any character from a specified set,
/// useful in parsing scenarios such as finding the last delimiter in a string.
///
/// # Arguments
///
/// * `haystack`: The byte slice to search.
/// * `needles`: The set of bytes to search for within the haystack.
///
/// # Returns
///
/// An `Option<usize>` representing the index of the last occurrence of any byte from
/// `needles` within `haystack`, if found, otherwise `None`.
pub fn rfind_char_from<H, N>(haystack: H, needles: N) -> Option<usize>
where
H: AsRef<[u8]>,
N: AsRef<[u8]>,
{
let haystack_ref = haystack.as_ref();
let needles_ref = needles.as_ref();
let haystack_pointer = haystack_ref.as_ptr() as _;
let haystack_length = haystack_ref.len();
let needles_pointer = needles_ref.as_ptr() as _;
let needles_length = needles_ref.len();
let result = unsafe {
sz_rfind_char_from(
haystack_pointer,
haystack_length,
needles_pointer,
needles_length,
)
};
if result.is_null() {
None
} else {
Some(unsafe { result.offset_from(haystack_pointer) } as usize)
}
}
/// Finds the index of the first character in `haystack` that is not present in `needles`.
/// This function is useful for skipping over a known set of characters and finding the
/// first character that does not belong to that set.
///
/// # Arguments
///
/// * `haystack`: The byte slice to search.
/// * `needles`: The set of bytes that should not be matched within the haystack.
///
/// # Returns
///
/// An `Option<usize>` representing the index of the first occurrence of any byte not in
/// `needles` within `haystack`, if found, otherwise `None`.
pub fn find_char_not_from<H, N>(haystack: H, needles: N) -> Option<usize>
where
H: AsRef<[u8]>,
N: AsRef<[u8]>,
{
let haystack_ref = haystack.as_ref();
let needles_ref = needles.as_ref();
let haystack_pointer = haystack_ref.as_ptr() as _;
let haystack_length = haystack_ref.len();
let needles_pointer = needles_ref.as_ptr() as _;
let needles_length = needles_ref.len();
let result = unsafe {
sz_find_char_not_from(
haystack_pointer,
haystack_length,
needles_pointer,
needles_length,
)
};
if result.is_null() {
None
} else {
Some(unsafe { result.offset_from(haystack_pointer) } as usize)
}
}
/// Finds the index of the last character in `haystack` that is not present in `needles`.
/// Useful for text processing tasks such as trimming trailing characters that belong to
/// a specified set.
///
/// # Arguments
///
/// * `haystack`: The byte slice to search.
/// * `needles`: The set of bytes that should not be matched within the haystack.
///
/// # Returns
///
/// An `Option<usize>` representing the index of the last occurrence of any byte not in
/// `needles` within `haystack`, if found, otherwise `None`.
pub fn rfind_char_not_from<H, N>(haystack: H, needles: N) -> Option<usize>
where
H: AsRef<[u8]>,
N: AsRef<[u8]>,
{
let haystack_ref = haystack.as_ref();
let needles_ref = needles.as_ref();
let haystack_pointer = haystack_ref.as_ptr() as _;
let haystack_length = haystack_ref.len();
let needles_pointer = needles_ref.as_ptr() as _;
let needles_length = needles_ref.len();
let result = unsafe {
sz_rfind_char_not_from(
haystack_pointer,
haystack_length,
needles_pointer,
needles_length,
)
};
if result.is_null() {
None
} else {
Some(unsafe { result.offset_from(haystack_pointer) } as usize)
}
}
/// Computes the Levenshtein edit distance between two strings, using the Wagner-Fisher
/// algorithm. This measure is widely used in applications like spell-checking, DNA sequence
/// analysis.
///
/// # Arguments
///
/// * `first`: The first byte slice.
/// * `second`: The second byte slice.
/// * `bound`: The maximum distance to compute, allowing for early exit.
///
/// # Returns
///
/// A `usize` representing the minimum number of single-character edits (insertions,
/// deletions, or substitutions) required to change `first` into `second`.
pub fn edit_distance_bounded<F, S>(first: F, second: S, bound: usize) -> usize
where
F: AsRef<[u8]>,
S: AsRef<[u8]>,
{
let first_ref = first.as_ref();
let second_ref = second.as_ref();
let first_length = first_ref.len();
let second_length = second_ref.len();
let first_pointer = first_ref.as_ptr() as _;
let second_pointer = second_ref.as_ptr() as _;
unsafe {
sz_edit_distance(
first_pointer,
first_length,
second_pointer,
second_length,
// Upper bound on the distance, that allows us to exit early. If zero is
// passed, the maximum possible distance will be equal to the length of
// the longer input.
bound,
// Uses the default allocator
core::ptr::null(),
)
}
}
/// Computes the Levenshtein edit distance between two UTF8 strings, using the Wagner-Fisher
/// algorithm. This measure is widely used in applications like spell-checking.
///
/// # Arguments
///
/// * `first`: The first byte slice.
/// * `second`: The second byte slice.
/// * `bound`: The maximum distance to compute, allowing for early exit.
///
/// # Returns
///
/// A `usize` representing the minimum number of single-character edits (insertions,
/// deletions, or substitutions) required to change `first` into `second`.
pub fn edit_distance_utf8_bounded<F, S>(first: F, second: S, bound: usize) -> usize
where
F: AsRef<[u8]>,
S: AsRef<[u8]>,
{
let first_ref = first.as_ref();
let second_ref = second.as_ref();
let first_length = first_ref.len();
let second_length = second_ref.len();
let first_pointer = first_ref.as_ptr() as _;
let second_pointer = second_ref.as_ptr() as _;
unsafe {
sz_edit_distance_utf8(
first_pointer,
first_length,
second_pointer,
second_length,
// Upper bound on the distance, that allows us to exit early. If zero is
// passed, the maximum possible distance will be equal to the length of
// the longer input.
bound,
// Uses the default allocator
core::ptr::null(),
)
}
}
/// Computes the Levenshtein edit distance between two strings, using the Wagner-Fisher
/// algorithm. This measure is widely used in applications like spell-checking, DNA sequence
/// analysis.
///
/// # Arguments
///
/// * `first`: The first byte slice.
/// * `second`: The second byte slice.
///
/// # Returns
///
/// A `usize` representing the minimum number of single-character edits (insertions,
/// deletions, or substitutions) required to change `first` into `second`.
pub fn edit_distance<F, S>(first: F, second: S) -> usize
where
F: AsRef<[u8]>,
S: AsRef<[u8]>,
{
edit_distance_bounded(first, second, 0)
}
/// Computes the Levenshtein edit distance between two UTF8 strings, using the Wagner-Fisher
/// algorithm. This measure is widely used in applications like spell-checking.
///
/// # Arguments
///
/// * `first`: The first byte slice.
/// * `second`: The second byte slice.
///
/// # Returns
///
/// A `usize` representing the minimum number of single-character edits (insertions,
/// deletions, or substitutions) required to change `first` into `second`.
pub fn edit_distance_utf8<F, S>(first: F, second: S) -> usize
where
F: AsRef<[u8]>,
S: AsRef<[u8]>,
{
edit_distance_utf8_bounded(first, second, 0)
}
/// Computes the Hamming edit distance between two strings, counting the number of substituted characters.
/// Difference in length is added to the result as well.
///
/// # Arguments
///
/// * `first`: The first byte slice.
/// * `second`: The second byte slice.
/// * `bound`: The maximum distance to compute, allowing for early exit.
///
/// # Returns
///
/// A `usize` representing the minimum number of single-character edits (substitutions) required to
/// change `first` into `second`.
pub fn hamming_distance_bounded<F, S>(first: F, second: S, bound: usize) -> usize
where
F: AsRef<[u8]>,
S: AsRef<[u8]>,
{
let first_ref = first.as_ref();
let second_ref = second.as_ref();
let first_length = first_ref.len();
let second_length = second_ref.len();
let first_pointer = first_ref.as_ptr() as _;
let second_pointer = second_ref.as_ptr() as _;
unsafe {
sz_hamming_distance(
first_pointer,
first_length,
second_pointer,
second_length,
// Upper bound on the distance, that allows us to exit early. If zero is
// passed, the maximum possible distance will be equal to the length of
// the longer input.
bound,
)
}
}
/// Computes the Hamming edit distance between two UTF8 strings, counting the number of substituted
/// variable-length characters. Difference in length is added to the result as well.
///
/// # Arguments
///
/// * `first`: The first byte slice.
/// * `second`: The second byte slice.
/// * `bound`: The maximum distance to compute, allowing for early exit.
///
/// # Returns
///
/// A `usize` representing the minimum number of single-character edits (substitutions) required to
/// change `first` into `second`.
pub fn hamming_distance_utf8_bounded<F, S>(first: F, second: S, bound: usize) -> usize
where
F: AsRef<[u8]>,
S: AsRef<[u8]>,
{
let first_ref = first.as_ref();
let second_ref = second.as_ref();
let first_length = first_ref.len();
let second_length = second_ref.len();
let first_pointer = first_ref.as_ptr() as _;
let second_pointer = second_ref.as_ptr() as _;
unsafe {
sz_hamming_distance_utf8(
first_pointer,
first_length,
second_pointer,
second_length,
// Upper bound on the distance, that allows us to exit early. If zero is
// passed, the maximum possible distance will be equal to the length of
// the longer input.
bound,
)
}
}
/// Computes the Hamming edit distance between two strings, counting the number of substituted characters.
/// Difference in length is added to the result as well.
///
/// # Arguments
///
/// * `first`: The first byte slice.
/// * `second`: The second byte slice.
///
/// # Returns
///
/// A `usize` representing the minimum number of single-character edits (substitutions) required to
/// change `first` into `second`.
pub fn hamming_distance<F, S>(first: F, second: S) -> usize
where
F: AsRef<[u8]>,
S: AsRef<[u8]>,
{
hamming_distance_bounded(first, second, 0)
}
/// Computes the Hamming edit distance between two UTF8 strings, counting the number of substituted
/// variable-length characters. Difference in length is added to the result as well.
///
/// # Arguments
///
/// * `first`: The first byte slice.
/// * `second`: The second byte slice.
///
/// # Returns
///
/// A `usize` representing the minimum number of single-character edits (substitutions) required to
/// change `first` into `second`.
pub fn hamming_distance_utf8<F, S>(first: F, second: S) -> usize
where
F: AsRef<[u8]>,
S: AsRef<[u8]>,
{
hamming_distance_utf8_bounded(first, second, 0)
}
/// Computes the Needleman-Wunsch alignment score for two strings. This function is
/// particularly used in bioinformatics for sequence alignment but is also applicable in
/// other domains requiring detailed comparison between two strings, including gap and
/// substitution penalties.
///
/// # Arguments
///
/// * `first`: The first byte slice to align.
/// * `second`: The second byte slice to align.
/// * `matrix`: The substitution matrix used for scoring.
/// * `gap`: The penalty for each gap introduced during alignment.
///
/// # Returns
///
/// An `isize` representing the total alignment score, where higher scores indicate better
/// alignment between the two strings, considering the specified gap penalties and
/// substitution matrix.
pub fn alignment_score<F, S>(first: F, second: S, matrix: [[i8; 256]; 256], gap: i8) -> isize
where
F: AsRef<[u8]>,
S: AsRef<[u8]>,
{
let first_ref = first.as_ref();
let second_ref = second.as_ref();
let first_length = first_ref.len();
let second_length = second_ref.len();
let first_pointer = first_ref.as_ptr() as _;
let second_pointer = second_ref.as_ptr() as _;
unsafe {
sz_alignment_score(
first_pointer,
first_length,
second_pointer,
second_length,
matrix.as_ptr() as _,
gap,
core::ptr::null(),
)
}
}
/// Generates a default substitution matrix for use with the Needleman-Wunsch
/// alignment algorithm. This matrix is initialized such that diagonal entries
/// (representing matching characters) are zero, and off-diagonal entries
/// (representing mismatches) are -1. This setup effectively produces distances
/// equal to the negative Levenshtein edit distance, suitable for basic sequence
/// alignment tasks where all mismatches are penalized equally and there are no
/// rewards for matches.
///
/// # Returns
///
/// A 256x256 array of `i8`, where each element represents the substitution cost
/// between two characters (byte values). Matching characters are assigned a cost
/// of 0, and non-matching characters are assigned a cost of -1.
pub fn unary_substitution_costs() -> [[i8; 256]; 256] {
let mut result = [[0; 256]; 256];
for i in 0..256 {
for j in 0..256 {
result[i][j] = if i == j { 0 } else { -1 };
}
}
result
}
/// Randomizes the contents of a given byte slice `text` using characters from
/// a specified `alphabet`. This function mutates `text` in place, replacing each
/// byte with a random one from `alphabet`. It is designed for situations where
/// you need to generate random strings or data sequences based on a specific set
/// of characters, such as generating random DNA sequences or testing inputs.
///
/// # Type Parameters
///
/// * `T`: The type of the text to be randomized. Must be mutable and convertible to a byte slice.
/// * `A`: The type of the alphabet. Must be convertible to a byte slice.
///
/// # Arguments
///
/// * `text`: A mutable reference to the data to randomize. This data will be mutated in place.
/// * `alphabet`: A reference to the byte slice representing the alphabet to use for randomization.
///
/// # Examples
///
/// ```
/// use stringzilla::sz;
/// let mut my_text = vec![0; 10]; // A buffer to randomize
/// let alphabet = b"ACTG"; // Using a DNA alphabet
/// sz::randomize(&mut my_text, &alphabet);
/// ```
///
/// After than, `my_text` is filled with random 'A', 'C', 'T', or 'G' values.
pub fn randomize<T, A>(text: &mut T, alphabet: &A)
where
T: AsMut<[u8]> + ?Sized, // Allows for mutable references to dynamically sized types.
A: AsRef<[u8]> + ?Sized, // Allows for references to dynamically sized types.
{
let text_slice = text.as_mut();
let alphabet_slice = alphabet.as_ref();
unsafe {
sz_generate(
alphabet_slice.as_ptr() as *const c_void,
alphabet_slice.len(),
text_slice.as_mut_ptr() as *mut c_void,
text_slice.len(),
core::ptr::null(),
core::ptr::null_mut(),
);
}
}
}
/// Provides extensions for string searching and manipulation functionalities
/// on types that can reference byte slices ([u8]). This trait extends the capability
/// of any type implementing `AsRef<[u8]>`, allowing easy integration of SIMD-accelerated
/// string processing functions.
///
/// # Examples
///
/// Basic usage on a `Vec<u8>`:
///
/// ```
/// use stringzilla::StringZilla;
///
/// let haystack: &[u8] = &[b'a', b'b', b'c', b'd', b'e'];
/// let needle: &[u8] = &[b'c', b'd'];
///
/// assert_eq!(haystack.sz_find(needle.as_ref()), Some(2));
/// ```
///
/// Searching in a string slice:
///
/// ```
/// use stringzilla::StringZilla;
///
/// let haystack = "abcdef";
/// let needle = "cd";
///
/// assert_eq!(haystack.sz_find(needle.as_bytes()), Some(2));
/// ```
pub trait StringZilla<N>
where
N: AsRef<[u8]>,
{
/// Searches for the first occurrence of `needle` in `self`.
///
/// # Examples
///
/// ```
/// use stringzilla::StringZilla;
///
/// let haystack = "Hello, world!";
/// assert_eq!(haystack.sz_find("world".as_bytes()), Some(7));
/// ```
fn sz_find(&self, needle: N) -> Option<usize>;
/// Searches for the last occurrence of `needle` in `self`.
///
/// # Examples
///
/// ```
/// use stringzilla::StringZilla;
///
/// let haystack = "Hello, world, world!";
/// assert_eq!(haystack.sz_rfind("world".as_bytes()), Some(14));
/// ```
fn sz_rfind(&self, needle: N) -> Option<usize>;
/// Finds the index of the first character in `self` that is also present in `needles`.
///
/// # Examples
///
/// ```
/// use stringzilla::StringZilla;
///
/// let haystack = "Hello, world!";
/// assert_eq!(haystack.sz_find_char_from("aeiou".as_bytes()), Some(1));
/// ```
fn sz_find_char_from(&self, needles: N) -> Option<usize>;
/// Finds the index of the last character in `self` that is also present in `needles`.
///
/// # Examples
///
/// ```
/// use stringzilla::StringZilla;
///
/// let haystack = "Hello, world!";
/// assert_eq!(haystack.sz_rfind_char_from("aeiou".as_bytes()), Some(8));
/// ```
fn sz_rfind_char_from(&self, needles: N) -> Option<usize>;
/// Finds the index of the first character in `self` that is not present in `needles`.
///
/// # Examples
///
/// ```
/// use stringzilla::StringZilla;
///
/// let haystack = "Hello, world!";
/// assert_eq!(haystack.sz_find_char_not_from("aeiou".as_bytes()), Some(0));
/// ```
fn sz_find_char_not_from(&self, needles: N) -> Option<usize>;
/// Finds the index of the last character in `self` that is not present in `needles`.
///
/// # Examples
///
/// ```
/// use stringzilla::StringZilla;
///
/// let haystack = "Hello, world!";
/// assert_eq!(haystack.sz_rfind_char_not_from("aeiou".as_bytes()), Some(12));
/// ```
fn sz_rfind_char_not_from(&self, needles: N) -> Option<usize>;
/// Computes the Levenshtein edit distance between `self` and `other`.
///
/// # Examples
///
/// ```
/// use stringzilla::StringZilla;
///
/// let first = "kitten";
/// let second = "sitting";
/// assert_eq!(first.sz_edit_distance(second.as_bytes()), 3);
/// ```
fn sz_edit_distance(&self, other: N) -> usize;
/// Computes the alignment score between `self` and `other` using the specified
/// substitution matrix and gap penalty.
///
/// # Examples
///
/// ```
/// use stringzilla::{sz, StringZilla};
///
/// let first = "kitten";
/// let second = "sitting";
/// let matrix = sz::unary_substitution_costs();
/// let gap_penalty = -1;
/// assert_eq!(first.sz_alignment_score(second.as_bytes(), matrix, gap_penalty), -3);
/// ```
fn sz_alignment_score(&self, other: N, matrix: [[i8; 256]; 256], gap: i8) -> isize;
}
impl<T, N> StringZilla<N> for T
where
T: AsRef<[u8]>,
N: AsRef<[u8]>,
{
fn sz_find(&self, needle: N) -> Option<usize> {
sz::find(self, needle)
}
fn sz_rfind(&self, needle: N) -> Option<usize> {
sz::rfind(self, needle)
}
fn sz_find_char_from(&self, needles: N) -> Option<usize> {
sz::find_char_from(self, needles)
}
fn sz_rfind_char_from(&self, needles: N) -> Option<usize> {
sz::rfind_char_from(self, needles)
}
fn sz_find_char_not_from(&self, needles: N) -> Option<usize> {
sz::find_char_not_from(self, needles)
}
fn sz_rfind_char_not_from(&self, needles: N) -> Option<usize> {
sz::rfind_char_not_from(self, needles)
}
fn sz_edit_distance(&self, other: N) -> usize {
sz::edit_distance(self, other)
}
fn sz_alignment_score(&self, other: N, matrix: [[i8; 256]; 256], gap: i8) -> isize {
sz::alignment_score(self, other, matrix, gap)
}
}
/// Provides a tool for mutating a byte slice by filling it with random data from a specified alphabet.
/// This trait is especially useful for types that need to be mutable and can reference or be converted to byte slices.
///
/// # Examples
///
/// Filling a mutable byte buffer with random ASCII letters:
///
/// ```
/// use stringzilla::MutableStringZilla;
///
/// let mut buffer = vec![0u8; 10]; // A buffer to randomize
/// let alphabet = b"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"; // Alphabet to use
/// buffer.sz_randomize(alphabet);
///
/// println!("Random buffer: {:?}", buffer);
/// // The buffer will now contain random ASCII letters.
/// ```
pub trait MutableStringZilla<A>
where
A: AsRef<[u8]>,
{
/// Fills the implementing byte slice with random bytes from the specified `alphabet`.
///
/// # Examples
///
/// ```
/// use stringzilla::MutableStringZilla;
///
/// let mut text = vec![0; 1000]; // A buffer to randomize
/// let alphabet = b"AGTC"; // Using a DNA alphabet
/// text.sz_randomize(alphabet);
///
/// // `text` is now filled with random 'A', 'G', 'T', or 'C' values.
/// ```
fn sz_randomize(&mut self, alphabet: A);
}
impl<T, A> MutableStringZilla<A> for T
where
T: AsMut<[u8]>,
A: AsRef<[u8]>,
{
fn sz_randomize(&mut self, alphabet: A) {
let self_mut = self.as_mut();
let alphabet_ref = alphabet.as_ref();
sz::randomize(self_mut, alphabet_ref);
}
}
#[cfg(test)]
mod tests {
use std::borrow::Cow;
use crate::sz;
use crate::MutableStringZilla;
use crate::StringZilla;
#[test]
fn hamming() {
assert_eq!(sz::hamming_distance("hello", "hello"), 0);
assert_eq!(sz::hamming_distance("hello", "hell"), 1);
assert_eq!(sz::hamming_distance("abc", "adc"), 1);
assert_eq!(sz::hamming_distance_bounded("abcdefgh", "ABCDEFGH", 2), 2);
assert_eq!(sz::hamming_distance_utf8("αβγδ", "αγγδ"), 1);
}
#[test]
fn levenshtein() {
assert_eq!(sz::edit_distance("hello", "hell"), 1);
assert_eq!(sz::edit_distance("hello", "hell"), 1);
assert_eq!(sz::edit_distance("abc", ""), 3);
assert_eq!(sz::edit_distance("abc", "ac"), 1);
assert_eq!(sz::edit_distance("abc", "a_bc"), 1);
assert_eq!(sz::edit_distance("abc", "adc"), 1);
assert_eq!(sz::edit_distance("fitting", "kitty"), 4);
assert_eq!(sz::edit_distance("smitten", "mitten"), 1);
assert_eq!(sz::edit_distance("ggbuzgjux{}l", "gbuzgjux{}l"), 1);
assert_eq!(sz::edit_distance("abcdefgABCDEFG", "ABCDEFGabcdefg"), 14);
assert_eq!(sz::edit_distance_bounded("fitting", "kitty", 2), 2);
assert_eq!(sz::edit_distance_utf8("façade", "facade"), 1);
}
#[test]
fn needleman() {
let costs_vector = sz::unary_substitution_costs();
assert_eq!(
sz::alignment_score("listen", "silent", costs_vector, -1),
-4
);
assert_eq!(
sz::alignment_score("abcdefgABCDEFG", "ABCDEFGabcdefg", costs_vector, -1),
-14
);
assert_eq!(sz::alignment_score("hello", "hello", costs_vector, -1), 0);
assert_eq!(sz::alignment_score("hello", "hell", costs_vector, -1), -1);
}
#[test]
fn search() {
let my_string: String = String::from("Hello, world!");
let my_str: &str = my_string.as_str();
let my_cow_str: Cow<'_, str> = Cow::from(&my_string);
// Identical to `memchr::memmem::find` and `memchr::memmem::rfind` functions
assert_eq!(sz::find("Hello, world!", "world"), Some(7));
assert_eq!(sz::rfind("Hello, world!", "world"), Some(7));
// Use the generic function with a String
assert_eq!(my_string.sz_find("world"), Some(7));
assert_eq!(my_string.sz_rfind("world"), Some(7));
assert_eq!(my_string.sz_find_char_from("world"), Some(2));
assert_eq!(my_string.sz_rfind_char_from("world"), Some(11));
assert_eq!(my_string.sz_find_char_not_from("world"), Some(0));
assert_eq!(my_string.sz_rfind_char_not_from("world"), Some(12));
// Use the generic function with a &str
assert_eq!(my_str.sz_find("world"), Some(7));
assert_eq!(my_str.sz_find("world"), Some(7));
assert_eq!(my_str.sz_find_char_from("world"), Some(2));
assert_eq!(my_str.sz_rfind_char_from("world"), Some(11));
assert_eq!(my_str.sz_find_char_not_from("world"), Some(0));
assert_eq!(my_str.sz_rfind_char_not_from("world"), Some(12));
// Use the generic function with a Cow<'_, str>
assert_eq!(my_cow_str.as_ref().sz_find("world"), Some(7));
assert_eq!(my_cow_str.as_ref().sz_find("world"), Some(7));
assert_eq!(my_cow_str.as_ref().sz_find_char_from("world"), Some(2));
assert_eq!(my_cow_str.as_ref().sz_rfind_char_from("world"), Some(11));
assert_eq!(my_cow_str.as_ref().sz_find_char_not_from("world"), Some(0));
assert_eq!(
my_cow_str.as_ref().sz_rfind_char_not_from("world"),
Some(12)
);
}
#[test]
fn randomize() {
let mut text: Vec<u8> = vec![0; 10]; // A buffer of ten zeros
let alphabet: &[u8] = b"abcd"; // A byte slice alphabet
text.sz_randomize(alphabet);
// Iterate throught text and check that it only contains letters from the alphabet
assert!(text
.iter()
.all(|&b| b == b'd' || b == b'c' || b == b'b' || b == b'a'));
}
}