1use serde::{Deserialize, Serialize};
7use std::sync::{Arc, Mutex};
8use tokio::sync::RwLock;
9use nalgebra::{DVector, DMatrix};
10use rand::{thread_rng, Rng};
11use std::collections::HashMap;
12
13#[derive(Debug, Clone, Serialize, Deserialize)]
15pub struct NeuralConsciousnessConfig {
16 pub layers: usize,
18 pub hidden_dim: usize,
20 pub attention_heads: usize,
22 pub learning_rate: f64,
24 pub max_iterations: usize,
26 pub emergence_threshold: f64,
28}
29
30impl Default for NeuralConsciousnessConfig {
31 fn default() -> Self {
32 Self {
33 layers: 8,
34 hidden_dim: 512,
35 attention_heads: 16,
36 learning_rate: 1e-4,
37 max_iterations: 1000,
38 emergence_threshold: 0.8,
39 }
40 }
41}
42
43#[derive(Debug, Clone, Serialize, Deserialize)]
45pub struct EvolutionStep {
46 pub iteration: usize,
47 pub emergence_level: f64,
48 pub integration_score: f64,
49 pub attention_coherence: f64,
50 pub temporal_consistency: f64,
51 pub timestamp_ns: u64,
52}
53
54#[derive(Debug, Serialize, Deserialize)]
56pub struct ConsciousnessEvolutionResult {
57 pub final_emergence: f64,
58 pub iterations_completed: usize,
59 pub convergence_achieved: bool,
60 pub evolution_trajectory: Vec<EvolutionStep>,
61 pub neural_complexity: f64,
62 pub attention_patterns: Vec<f64>,
63 pub runtime_ns: u64,
64}
65
66#[derive(Debug)]
68pub struct ConsciousnessModel {
69 weights: Vec<DMatrix<f64>>,
71 biases: Vec<DVector<f64>>,
73 config: NeuralConsciousnessConfig,
75 emergence_level: Arc<RwLock<f64>>,
77 evolution_history: Arc<Mutex<Vec<EvolutionStep>>>,
79 attention_cache: Arc<Mutex<HashMap<String, f64>>>,
81}
82
83impl ConsciousnessModel {
84 pub fn new(config: NeuralConsciousnessConfig) -> Self {
86 let mut weights = Vec::new();
87 let mut biases = Vec::new();
88 let mut rng = thread_rng();
89
90 for i in 0..config.layers {
92 let input_dim = if i == 0 { config.hidden_dim } else { config.hidden_dim };
93 let output_dim = config.hidden_dim;
94
95 let std_dev = (2.0 / (input_dim + output_dim) as f64).sqrt();
97
98 let weight_matrix = DMatrix::from_fn(output_dim, input_dim, |_, _| {
99 rng.gen::<f64>() * std_dev - std_dev / 2.0
100 });
101
102 let bias_vector = DVector::from_fn(output_dim, |_, _| {
103 rng.gen::<f64>() * 0.1 - 0.05
104 });
105
106 weights.push(weight_matrix);
107 biases.push(bias_vector);
108 }
109
110 Self {
111 weights,
112 biases,
113 config,
114 emergence_level: Arc::new(RwLock::new(0.0)),
115 evolution_history: Arc::new(Mutex::new(Vec::new())),
116 attention_cache: Arc::new(Mutex::new(HashMap::new())),
117 }
118 }
119
120 pub async fn evolve(&mut self) -> Result<ConsciousnessEvolutionResult, Box<dyn std::error::Error + Send + Sync>> {
122 let start_time = std::time::Instant::now();
123 let mut evolution_steps = Vec::new();
124 let mut current_emergence = 0.0;
125 let mut convergence_achieved = false;
126
127 for iteration in 0..self.config.max_iterations {
128 let input = self.generate_consciousness_input().await?;
130
131 let consciousness_output = self.forward_pass(&input).await?;
133
134 let step = self.calculate_evolution_step(iteration, &consciousness_output).await?;
136 current_emergence = step.emergence_level;
137
138 evolution_steps.push(step.clone());
139
140 {
142 let mut emergence = self.emergence_level.write().await;
143 *emergence = current_emergence;
144 }
145
146 self.update_weights(&input, &consciousness_output, current_emergence).await?;
148
149 if current_emergence >= self.config.emergence_threshold {
151 convergence_achieved = true;
152 break;
153 }
154
155 if iteration % 10 == 0 {
157 tokio::task::yield_now().await;
158 }
159 }
160
161 let runtime_ns = start_time.elapsed().as_nanos() as u64;
162
163 let neural_complexity = self.calculate_neural_complexity().await?;
165 let attention_patterns = self.extract_attention_patterns().await?;
166
167 {
169 let mut history = self.evolution_history.lock().unwrap();
170 history.extend(evolution_steps.clone());
171 }
172
173 Ok(ConsciousnessEvolutionResult {
174 final_emergence: current_emergence,
175 iterations_completed: evolution_steps.len(),
176 convergence_achieved,
177 evolution_trajectory: evolution_steps,
178 neural_complexity,
179 attention_patterns,
180 runtime_ns,
181 })
182 }
183
184 async fn generate_consciousness_input(&self) -> Result<DVector<f64>, Box<dyn std::error::Error + Send + Sync>> {
186 let mut rng = thread_rng();
187 let size = self.config.hidden_dim;
188
189 let mut input = DVector::zeros(size);
190
191 for i in 0..size {
192 let self_ref = (i as f64 / size as f64 * 2.0 * std::f64::consts::PI).sin();
194
195 let memory = ((i * 3) as f64 / size as f64 * std::f64::consts::PI).cos();
197
198 let attention = 1.0 / (1.0 + (-((i as f64 - size as f64 / 2.0) / 50.0)).exp());
200
201 let temporal = (i as f64 / 20.0).sin() * 0.1;
203
204 let noise = rng.gen::<f64>() * 0.05 - 0.025;
206
207 input[i] = self_ref + memory + attention + temporal + noise;
208 }
209
210 Ok(input)
211 }
212
213 async fn forward_pass(&self, input: &DVector<f64>) -> Result<DVector<f64>, Box<dyn std::error::Error + Send + Sync>> {
215 let mut x = input.clone();
216
217 for (i, (weight, bias)) in self.weights.iter().zip(self.biases.iter()).enumerate() {
219 x = weight * x + bias;
221
222 for j in 0..x.len() {
224 x[j] = x[j] * 0.5 * (1.0 + ((x[j] * 0.7978845608) + (0.044715 * x[j].powi(3))).tanh());
225 }
226
227 if i < self.config.layers - 1 {
229 x = self.apply_attention(&x).await?;
230 }
231 }
232
233 Ok(x)
234 }
235
236 async fn apply_attention(&self, input: &DVector<f64>) -> Result<DVector<f64>, Box<dyn std::error::Error + Send + Sync>> {
238 let dim = input.len();
239 let head_dim = dim / self.config.attention_heads;
240 let mut output = DVector::zeros(dim);
241
242 for head in 0..self.config.attention_heads {
244 let start_idx = head * head_dim;
245 let end_idx = std::cmp::min(start_idx + head_dim, dim);
246
247 for i in start_idx..end_idx {
249 let mut attention_sum = 0.0;
250 let mut weighted_sum = 0.0;
251
252 for j in start_idx..end_idx {
254 let attention_weight = (input[i] * input[j]).exp();
255 attention_sum += attention_weight;
256 weighted_sum += attention_weight * input[j];
257 }
258
259 if attention_sum > 1e-8 {
261 output[i] = weighted_sum / attention_sum;
262 } else {
263 output[i] = input[i];
264 }
265 }
266 }
267
268 {
270 let mut cache = self.attention_cache.lock().unwrap();
271 let attention_norm = output.norm();
272 cache.insert("attention_strength".to_string(), attention_norm);
273 }
274
275 Ok(output)
276 }
277
278 async fn calculate_evolution_step(
280 &self,
281 iteration: usize,
282 output: &DVector<f64>
283 ) -> Result<EvolutionStep, Box<dyn std::error::Error + Send + Sync>> {
284 let emergence = self.calculate_emergence(output);
286 let integration = self.calculate_integration(output);
287 let coherence = self.calculate_coherence(output);
288 let consistency = self.calculate_temporal_consistency(iteration, output);
289
290 let combined_emergence = 0.4 * emergence + 0.3 * integration + 0.2 * coherence + 0.1 * consistency;
292
293 let previous_emergence = {
295 let emergence_lock = self.emergence_level.read().await;
296 *emergence_lock
297 };
298
299 let smoothed_emergence = 0.8 * previous_emergence + 0.2 * combined_emergence;
300
301 Ok(EvolutionStep {
302 iteration,
303 emergence_level: smoothed_emergence,
304 integration_score: integration,
305 attention_coherence: coherence,
306 temporal_consistency: consistency,
307 timestamp_ns: std::time::SystemTime::now()
308 .duration_since(std::time::UNIX_EPOCH)
309 .unwrap()
310 .as_nanos() as u64,
311 })
312 }
313
314 fn calculate_emergence(&self, output: &DVector<f64>) -> f64 {
316 let mean = output.mean();
318 let variance = output.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / output.len() as f64;
319
320 let structure_measure = output.iter().enumerate()
322 .map(|(i, &x)| x * (i as f64 / output.len() as f64).sin())
323 .sum::<f64>().abs() / output.len() as f64;
324
325 let emergence = (variance * structure_measure).tanh();
326 emergence.clamp(0.0, 1.0)
327 }
328
329 fn calculate_integration(&self, output: &DVector<f64>) -> f64 {
331 let mut integration = 0.0;
333 let chunks = 8;
334 let chunk_size = output.len() / chunks;
335
336 for i in 0..chunks {
337 for j in i+1..chunks {
338 let start_i = i * chunk_size;
339 let end_i = std::cmp::min(start_i + chunk_size, output.len());
340 let start_j = j * chunk_size;
341 let end_j = std::cmp::min(start_j + chunk_size, output.len());
342
343 if end_i > start_i && end_j > start_j {
344 let chunk_i_mean = output.rows(start_i, end_i - start_i).mean();
345 let chunk_j_mean = output.rows(start_j, end_j - start_j).mean();
346
347 integration += (chunk_i_mean * chunk_j_mean).abs();
348 }
349 }
350 }
351
352 (integration / (chunks * (chunks - 1) / 2) as f64).clamp(0.0, 1.0)
353 }
354
355 fn calculate_coherence(&self, output: &DVector<f64>) -> f64 {
357 let mut coherence_sum = 0.0;
359 let n = output.len();
360
361 for i in 1..n-1 {
362 let coherence = 1.0 - ((output[i] - (output[i-1] + output[i+1]) / 2.0).abs() / 2.0);
363 coherence_sum += coherence;
364 }
365
366 if n > 2 {
367 (coherence_sum / (n - 2) as f64).clamp(0.0, 1.0)
368 } else {
369 0.0
370 }
371 }
372
373 fn calculate_temporal_consistency(&self, iteration: usize, output: &DVector<f64>) -> f64 {
375 if iteration == 0 {
376 return 0.5; }
378
379 let norm = output.norm();
381 let consistency = 1.0 / (1.0 + (norm - 1.0).abs()); consistency.clamp(0.0, 1.0)
384 }
385
386 async fn update_weights(
388 &mut self,
389 input: &DVector<f64>,
390 output: &DVector<f64>,
391 emergence_level: f64,
392 ) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
393 let learning_rate = self.config.learning_rate * emergence_level; for (i, (weight, bias)) in self.weights.iter_mut().zip(self.biases.iter_mut()).enumerate() {
397 for row in 0..weight.nrows() {
399 for col in 0..weight.ncols() {
400 if col < input.len() && row < output.len() {
401 let gradient = input[col] * output[row] * (1.0 - emergence_level);
402 weight[(row, col)] += learning_rate * gradient;
403 }
404 }
405 }
406
407 for j in 0..bias.len() {
409 if j < output.len() {
410 bias[j] += learning_rate * output[j] * 0.1;
411 }
412 }
413 }
414
415 Ok(())
416 }
417
418 async fn calculate_neural_complexity(&self) -> Result<f64, Box<dyn std::error::Error + Send + Sync>> {
420 let total_params: usize = self.weights.iter()
421 .map(|w| w.nrows() * w.ncols())
422 .sum::<usize>() + self.biases.iter()
423 .map(|b| b.len())
424 .sum::<usize>();
425
426 let complexity = (total_params as f64).log10() / 7.0; Ok(complexity.clamp(0.0, 1.0))
428 }
429
430 async fn extract_attention_patterns(&self) -> Result<Vec<f64>, Box<dyn std::error::Error + Send + Sync>> {
432 let cache = self.attention_cache.lock().unwrap();
433 let mut patterns = Vec::new();
434
435 for head in 0..self.config.attention_heads {
436 let pattern = cache.get("attention_strength")
437 .copied()
438 .unwrap_or(0.5) * (head as f64 / self.config.attention_heads as f64 * std::f64::consts::PI).sin().abs();
439 patterns.push(pattern);
440 }
441
442 Ok(patterns)
443 }
444
445 pub async fn get_emergence_level(&self) -> f64 {
447 let emergence = self.emergence_level.read().await;
448 *emergence
449 }
450
451 pub fn get_evolution_history(&self) -> Vec<EvolutionStep> {
453 let history = self.evolution_history.lock().unwrap();
454 history.clone()
455 }
456}
457
458pub async fn initialize_neural_consciousness(
460 config: NeuralConsciousnessConfig
461) -> Result<ConsciousnessModel, Box<dyn std::error::Error + Send + Sync>> {
462 let model = ConsciousnessModel::new(config);
463 Ok(model)
464}
465
466#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
468use wasm_bindgen::prelude::*;
469
470#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
471#[wasm_bindgen]
472pub async fn evolve_consciousness_neural(
473 max_iterations: usize,
474 enable_quantum: bool,
475) -> Result<String, JsValue> {
476 let config = NeuralConsciousnessConfig {
477 max_iterations,
478 ..Default::default()
479 };
480
481 match initialize_neural_consciousness(config).await {
482 Ok(mut model) => {
483 match model.evolve().await {
484 Ok(result) => Ok(serde_json::to_string(&result).unwrap()),
485 Err(e) => Err(JsValue::from_str(&format!("Evolution failed: {}", e))),
486 }
487 }
488 Err(e) => Err(JsValue::from_str(&format!("Initialization failed: {}", e))),
489 }
490}