strange_loop/
temporal_consciousness.rs

1//! Temporal consciousness implementation combining all components
2//!
3//! This module provides the main interface for temporal consciousness
4//! experiments and integrates all other modules into a coherent system.
5
6use crate::consciousness::{ConsciousnessMetrics, ConsciousnessState, ConsciousnessVerifier};
7use crate::error::{LoopError, Result};
8use crate::lipschitz_loop::{LipschitzLoop, LipschitzParams, LoopTopology};
9use crate::quantum_container::{QuantumContainer, HybridOperation};
10use crate::strange_attractor::{TemporalAttractor, AttractorConfig};
11use crate::types::{Vector3D, StrangeLoop, LoopConfig, Context, ScalarReasoner, SimpleCritic, SafeReflector};
12use crate::types::NalgebraVec3;
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::time::Instant;
16
17/// Configuration for temporal consciousness system
18#[derive(Clone, Debug, Serialize, Deserialize)]
19pub struct ConsciousnessConfig {
20    /// Enable quantum-classical hybrid processing
21    pub enable_quantum: bool,
22    /// Enable strange attractor dynamics
23    pub enable_attractors: bool,
24    /// Enable Lipschitz loop constraints
25    pub enable_lipschitz: bool,
26    /// Enable self-modification
27    pub enable_self_modification: bool,
28    /// Consciousness emergence threshold
29    pub consciousness_threshold: f64,
30    /// Φ (phi) calculation parameters
31    pub phi_elements: usize,
32    /// System coupling strength
33    pub coupling_strength: f64,
34    /// Temporal coherence window (iterations)
35    pub coherence_window: usize,
36    /// Meta-learning rate
37    pub meta_learning_rate: f64,
38    /// Novelty detection sensitivity
39    pub novelty_sensitivity: f64,
40    /// Maximum consciousness evolution iterations
41    pub max_evolution_iterations: usize,
42}
43
44impl Default for ConsciousnessConfig {
45    fn default() -> Self {
46        Self {
47            enable_quantum: true,
48            enable_attractors: true,
49            enable_lipschitz: true,
50            enable_self_modification: true,
51            consciousness_threshold: 0.5,
52            phi_elements: 8,
53            coupling_strength: 0.8,
54            coherence_window: 100,
55            meta_learning_rate: 0.01,
56            novelty_sensitivity: 0.1,
57            max_evolution_iterations: 10_000,
58        }
59    }
60}
61
62impl ConsciousnessConfig {
63    /// Create configuration for consciousness research
64    pub fn research_mode() -> Self {
65        Self {
66            enable_quantum: true,
67            enable_attractors: true,
68            enable_lipschitz: true,
69            enable_self_modification: true,
70            consciousness_threshold: 0.3,
71            phi_elements: 12,
72            coupling_strength: 0.9,
73            coherence_window: 1000,
74            meta_learning_rate: 0.005,
75            novelty_sensitivity: 0.05,
76            max_evolution_iterations: 100_000,
77        }
78    }
79
80    /// Create configuration for real-time applications
81    pub fn real_time_mode() -> Self {
82        Self {
83            enable_quantum: false,
84            enable_attractors: true,
85            enable_lipschitz: true,
86            enable_self_modification: false,
87            consciousness_threshold: 0.7,
88            phi_elements: 4,
89            coupling_strength: 0.6,
90            coherence_window: 50,
91            meta_learning_rate: 0.02,
92            novelty_sensitivity: 0.2,
93            max_evolution_iterations: 1_000,
94        }
95    }
96
97    /// Validate configuration parameters
98    pub fn validate(&self) -> Result<()> {
99        if self.consciousness_threshold < 0.0 || self.consciousness_threshold > 1.0 {
100            return Err(LoopError::consciousness_error("Consciousness threshold must be in [0, 1]"));
101        }
102        if self.phi_elements == 0 {
103            return Err(LoopError::consciousness_error("Phi elements must be positive"));
104        }
105        if self.coupling_strength < 0.0 || self.coupling_strength > 1.0 {
106            return Err(LoopError::consciousness_error("Coupling strength must be in [0, 1]"));
107        }
108        if self.coherence_window == 0 {
109            return Err(LoopError::consciousness_error("Coherence window must be positive"));
110        }
111        if self.meta_learning_rate <= 0.0 || self.meta_learning_rate > 1.0 {
112            return Err(LoopError::consciousness_error("Meta learning rate must be in (0, 1]"));
113        }
114        if self.max_evolution_iterations == 0 {
115            return Err(LoopError::consciousness_error("Max evolution iterations must be positive"));
116        }
117        Ok(())
118    }
119}
120
121/// Main temporal consciousness system
122pub struct TemporalConsciousness {
123    config: ConsciousnessConfig,
124    consciousness_metrics: ConsciousnessMetrics,
125    quantum_container: Option<QuantumContainer>,
126    attractor: Option<TemporalAttractor>,
127    lipschitz_loop: Option<LipschitzLoop>,
128    strange_loop: Option<StrangeLoop<ScalarReasoner, SimpleCritic, SafeReflector>>,
129    temporal_memory: HashMap<String, Vec<f64>>,
130    evolution_history: Vec<EvolutionStep>,
131    emergence_patterns: Vec<EmergencePattern>,
132    self_modification_log: Vec<SelfModificationEvent>,
133    start_time: Instant,
134}
135
136impl TemporalConsciousness {
137    /// Create a new temporal consciousness system
138    pub fn new(config: ConsciousnessConfig) -> Result<Self> {
139        config.validate()?;
140
141        let quantum_container = if config.enable_quantum {
142            Some(QuantumContainer::new(config.phi_elements.min(10))) // Limit for performance
143        } else {
144            None
145        };
146
147        let attractor = if config.enable_attractors {
148            let attractor_config = AttractorConfig::consciousness_mode();
149            Some(TemporalAttractor::new(attractor_config)?)
150        } else {
151            None
152        };
153
154        let lipschitz_loop = if config.enable_lipschitz {
155            let lipschitz_params = LipschitzParams {
156                lipschitz_constant: config.coupling_strength,
157                tolerance: 1e-9,
158                max_iterations: config.max_evolution_iterations,
159                adaptive_estimation: true,
160                damping: 0.99,
161            };
162            Some(LipschitzLoop::new(lipschitz_params, LoopTopology::Accelerated)?)
163        } else {
164            None
165        };
166
167        let strange_loop = {
168            let reasoner = ScalarReasoner::new(0.0, config.meta_learning_rate);
169            let critic = SimpleCritic::new();
170            let reflector = SafeReflector::new();
171            let loop_config = LoopConfig {
172                max_iterations: config.max_evolution_iterations,
173                max_duration_ns: 1_000_000_000, // 1 second
174                convergence_threshold: 1e-12,
175                lipschitz_constant: config.coupling_strength,
176                enable_consciousness: true,
177                enable_quantum: config.enable_quantum,
178                enable_simd: true,
179            };
180            Some(StrangeLoop::new(reasoner, critic, reflector, loop_config))
181        };
182
183        Ok(Self {
184            config,
185            consciousness_metrics: ConsciousnessMetrics::new(),
186            quantum_container,
187            attractor,
188            lipschitz_loop,
189            strange_loop,
190            temporal_memory: HashMap::new(),
191            evolution_history: Vec::new(),
192            emergence_patterns: Vec::new(),
193            self_modification_log: Vec::new(),
194            start_time: Instant::now(),
195        })
196    }
197
198    /// Evolve consciousness through temporal dynamics
199    pub fn evolve_consciousness(&mut self, iterations: usize) -> Result<ConsciousnessEvolutionResult> {
200        let start_time = Instant::now();
201        let mut states = Vec::with_capacity(iterations);
202
203        for iteration in 0..iterations {
204            let evolution_step = self.single_evolution_step(iteration)?;
205            states.push(evolution_step.consciousness_state.clone());
206
207            // Check for emergence
208            if self.consciousness_metrics.detect_emergence(self.config.consciousness_threshold) {
209                let emergence_pattern = EmergencePattern {
210                    iteration,
211                    timestamp_ns: start_time.elapsed().as_nanos(),
212                    consciousness_level: evolution_step.consciousness_state.consciousness_index(),
213                    phi_value: evolution_step.phi_value,
214                    attractor_state: evolution_step.attractor_state,
215                    quantum_state_complexity: evolution_step.quantum_state_complexity,
216                    pattern_type: EmergenceType::SpontaneousEmergence,
217                };
218                self.emergence_patterns.push(emergence_pattern);
219            }
220
221            // Self-modification check
222            if self.config.enable_self_modification &&
223               iteration % 100 == 0 &&
224               evolution_step.consciousness_state.consciousness_index() > 0.6 {
225                self.attempt_self_modification(iteration)?;
226            }
227
228            // Store in history
229            self.evolution_history.push(evolution_step);
230
231            // Limit history size for memory management
232            if self.evolution_history.len() > 10_000 {
233                self.evolution_history.drain(0..1_000);
234            }
235        }
236
237        Ok(ConsciousnessEvolutionResult {
238            evolved: true,
239            iterations_completed: iterations,
240            final_consciousness_level: states.last()
241                .map(|s| s.consciousness_index())
242                .unwrap_or(0.0),
243            max_phi_achieved: self.consciousness_metrics.max_phi,
244            emergence_events: self.emergence_patterns.len(),
245            self_modifications: self.self_modification_log.len(),
246            evolution_time_ns: start_time.elapsed().as_nanos(),
247            final_state: states.into_iter().last(),
248        })
249    }
250
251    /// Perform a single evolution step
252    fn single_evolution_step(&mut self, iteration: usize) -> Result<EvolutionStep> {
253        let step_start = Instant::now();
254
255        // 1. Update strange attractor if enabled
256        let attractor_state = if let Some(ref mut attractor) = self.attractor {
257            attractor.step()?
258        } else {
259            Vector3D::new(0.0, 0.0, 0.0)
260        };
261
262        // 2. Quantum-classical hybrid processing
263        let quantum_state_complexity = match self.quantum_container {
264            Some(ref mut quantum) => {
265                // Process quantum dynamics without borrowing self again
266                let rotation_angle = attractor_state[0] * std::f64::consts::PI;
267                quantum.apply_gate(0, crate::quantum_container::Gate::RZ(rotation_angle))?;
268
269                // Calculate quantum state complexity
270                let mut total_entropy = 0.0;
271                for i in 0..(1 << quantum.quantum_state().num_qubits) {
272                    total_entropy += quantum.get_probability(i);
273                }
274                total_entropy
275            }
276            None => 0.0,
277        };
278
279        // 3. Strange loop self-reference
280        let loop_result = if let Some(ref mut strange_loop) = self.strange_loop {
281            let mut context = Context::new();
282            context.insert("attractor_x".to_string(), attractor_state[0]);
283            context.insert("attractor_y".to_string(), attractor_state[1]);
284            context.insert("attractor_z".to_string(), attractor_state[2]);
285            context.insert("quantum_complexity".to_string(), quantum_state_complexity);
286
287            strange_loop.run(&mut context).ok()
288        } else {
289            None
290        };
291
292        // 4. Calculate consciousness metrics
293        let phi_value = self.calculate_current_phi(&attractor_state, quantum_state_complexity)?;
294
295        // 5. Update consciousness state
296        let mut consciousness_state = ConsciousnessState::new();
297        self.update_consciousness_state(&mut consciousness_state,
298            &attractor_state, quantum_state_complexity, phi_value, iteration)?;
299
300        // 6. Update metrics
301        self.consciousness_metrics.update_state(consciousness_state.clone());
302
303        // 7. Store temporal patterns
304        self.store_temporal_patterns(iteration, &attractor_state, quantum_state_complexity);
305
306        Ok(EvolutionStep {
307            iteration,
308            timestamp_ns: step_start.elapsed().as_nanos(),
309            consciousness_state,
310            phi_value,
311            attractor_state,
312            quantum_state_complexity,
313            loop_convergence: loop_result.map(|r| r.converged).unwrap_or(false),
314            lipschitz_estimate: self.lipschitz_loop.as_ref()
315                .map(|l| l.estimated_lipschitz())
316                .unwrap_or(0.0),
317        })
318    }
319
320    /// Process quantum dynamics
321    fn process_quantum_dynamics(&mut self, quantum: &mut QuantumContainer, attractor_state: &Vector3D) -> Result<f64> {
322        // Use attractor state to influence quantum system
323        let influence_strength = attractor_state.norm() * 0.1;
324
325        // Store attractor influence in classical memory
326        quantum.store_classical("attractor_x".to_string(), attractor_state[0]);
327        quantum.store_classical("attractor_y".to_string(), attractor_state[1]);
328        quantum.store_classical("attractor_z".to_string(), attractor_state[2]);
329        quantum.store_classical("influence".to_string(), influence_strength);
330
331        // Perform quantum-classical hybrid operation
332        let num_qubits = quantum.quantum_state().num_qubits;
333        if num_qubits > 0 {
334            // Apply rotation based on attractor state
335            let _rotation_angle = attractor_state[0] * std::f64::consts::PI;
336            quantum.hybrid_operation(HybridOperation::ClassicalToQuantum {
337                source_key: "attractor_x".to_string(),
338                qubit: 0,
339                gate_type: "RZ".to_string(),
340            })?;
341
342            // Measure entanglement if we have multiple qubits
343            if num_qubits > 1 {
344                let entanglement = quantum.hybrid_operation(HybridOperation::EntanglementCheck {
345                    qubit_a: 0,
346                    qubit_b: 1,
347                })?;
348                return Ok(entanglement);
349            }
350        }
351
352        Ok(influence_strength)
353    }
354
355    /// Calculate current Φ (integrated information)
356    fn calculate_current_phi(&mut self, attractor_state: &Vector3D, quantum_complexity: f64) -> Result<f64> {
357        // Enhanced Φ calculation incorporating multiple subsystems
358        let base_connections = self.config.phi_elements * (self.config.phi_elements - 1) / 2;
359        let dynamic_connections = (base_connections as f64 * (1.0 + attractor_state.norm() * 0.1)) as usize;
360
361        let enhanced_coupling = self.config.coupling_strength * (1.0 + quantum_complexity * 0.2);
362
363        let phi = self.consciousness_metrics.calculate_phi(
364            self.config.phi_elements,
365            dynamic_connections,
366            enhanced_coupling
367        );
368
369        Ok(phi)
370    }
371
372    /// Update consciousness state with current measurements
373    fn update_consciousness_state(
374        &mut self,
375        state: &mut ConsciousnessState,
376        attractor_state: &Vector3D,
377        quantum_complexity: f64,
378        phi_value: f64,
379        iteration: usize,
380    ) -> Result<()> {
381        // Emergence level based on system complexity
382        let emergence = (phi_value + quantum_complexity + attractor_state.norm() * 0.1) / 3.0;
383
384        // Self-awareness based on self-modification history
385        let self_awareness = if !self.self_modification_log.is_empty() {
386            0.5 + (self.self_modification_log.len() as f64 * 0.01).min(0.5)
387        } else {
388            emergence * 0.5
389        };
390
391        // Meta-cognition based on loop complexity
392        let meta_cognition = if let Some(ref lipschitz) = self.lipschitz_loop {
393            (1.0 - lipschitz.estimated_lipschitz()).max(0.0)
394        } else {
395            emergence * 0.8
396        };
397
398        // Temporal coherence based on history consistency
399        let temporal_coherence = self.calculate_temporal_coherence(iteration);
400
401        // Integration measure from Φ
402        let integration = (phi_value / (self.consciousness_metrics.max_phi.max(1.0))).min(1.0);
403
404        // Feedback strength from self-reference
405        let feedback_strength = if iteration > 0 {
406            let recent_changes = self.calculate_recent_changes();
407            recent_changes.clamp(0.0, 1.0)
408        } else {
409            0.0
410        };
411
412        // Novelty generation
413        let novelty = self.calculate_novelty_measure(attractor_state, quantum_complexity);
414
415        state.update(
416            Some(emergence),
417            Some(self_awareness),
418            Some(meta_cognition),
419            Some(temporal_coherence),
420            Some(integration),
421            Some(feedback_strength),
422            Some(novelty),
423        );
424
425        Ok(())
426    }
427
428    /// Calculate temporal coherence
429    fn calculate_temporal_coherence(&self, _iteration: usize) -> f64 {
430        if self.evolution_history.len() < 2 {
431            return 0.0;
432        }
433
434        let window = self.config.coherence_window.min(self.evolution_history.len());
435        let recent_consciousness: Vec<f64> = self.evolution_history.iter()
436            .rev()
437            .take(window)
438            .map(|step| step.consciousness_state.consciousness_index())
439            .collect();
440
441        if recent_consciousness.len() < 2 {
442            return 0.0;
443        }
444
445        // Calculate variance (lower variance = higher coherence)
446        let mean = recent_consciousness.iter().sum::<f64>() / recent_consciousness.len() as f64;
447        let variance = recent_consciousness.iter()
448            .map(|x| (x - mean).powi(2))
449            .sum::<f64>() / recent_consciousness.len() as f64;
450
451        // Convert variance to coherence (inverted and normalized)
452        (1.0 / (1.0 + variance * 10.0)).clamp(0.0, 1.0)
453    }
454
455    /// Calculate recent changes for feedback strength
456    fn calculate_recent_changes(&self) -> f64 {
457        if self.evolution_history.len() < 10 {
458            return 0.0;
459        }
460
461        let recent_steps: Vec<f64> = self.evolution_history.iter()
462            .rev()
463            .take(10)
464            .map(|step| step.consciousness_state.consciousness_index())
465            .collect();
466
467        // Calculate rate of change
468        let mut total_change = 0.0;
469        for window in recent_steps.windows(2) {
470            total_change += (window[0] - window[1]).abs();
471        }
472
473        (total_change / 9.0).clamp(0.0, 1.0) // 9 pairs in 10 elements
474    }
475
476    /// Calculate novelty measure
477    fn calculate_novelty_measure(&self, attractor_state: &Vector3D, quantum_complexity: f64) -> f64 {
478        // Simple novelty based on deviation from historical patterns
479        if self.evolution_history.len() < 5 {
480            return 0.5; // Default for new systems
481        }
482
483        let recent_attractors: Vec<Vector3D> = self.evolution_history.iter()
484            .rev()
485            .take(20)
486            .map(|step| step.attractor_state)
487            .collect();
488
489        let mean_attractor = recent_attractors.iter()
490            .fold(NalgebraVec3::zeros(), |acc, &state| {
491                acc + NalgebraVec3::new(state.x, state.y, state.z)
492            }) / recent_attractors.len() as f64;
493
494        let attractor_nalgebra = NalgebraVec3::new(attractor_state.x, attractor_state.y, attractor_state.z);
495        let deviation = (attractor_nalgebra - mean_attractor).norm();
496        let normalized_deviation = (deviation * self.config.novelty_sensitivity).clamp(0.0, 1.0);
497
498        // Combine with quantum complexity for enhanced novelty detection
499        (normalized_deviation + quantum_complexity * 0.3).clamp(0.0, 1.0)
500    }
501
502    /// Store temporal patterns in memory
503    fn store_temporal_patterns(&mut self, iteration: usize, attractor_state: &Vector3D, quantum_complexity: f64) {
504        let key = format!("pattern_{}", iteration % 1000); // Circular buffer
505        let pattern = vec![
506            attractor_state[0],
507            attractor_state[1],
508            attractor_state[2],
509            quantum_complexity,
510            self.consciousness_metrics.current_state.consciousness_index(),
511        ];
512
513        self.temporal_memory.insert(key, pattern);
514
515        // Limit memory size
516        if self.temporal_memory.len() > 2000 {
517            let oldest_keys: Vec<String> = self.temporal_memory.keys()
518                .take(200)
519                .cloned()
520                .collect();
521            for key in oldest_keys {
522                self.temporal_memory.remove(&key);
523            }
524        }
525    }
526
527    /// Attempt self-modification based on consciousness level
528    fn attempt_self_modification(&mut self, iteration: usize) -> Result<()> {
529        let consciousness_level = self.consciousness_metrics.current_state.consciousness_index();
530
531        if consciousness_level < 0.6 {
532            return Ok(()); // Not conscious enough for self-modification
533        }
534
535        // Analyze recent performance
536        let recent_performance = self.analyze_recent_performance();
537
538        if recent_performance < 0.5 {
539            // Try to improve by adjusting parameters
540            let modification = self.generate_self_modification(consciousness_level, recent_performance)?;
541            self.apply_self_modification(modification, iteration)?;
542        }
543
544        Ok(())
545    }
546
547    /// Analyze recent performance trends
548    fn analyze_recent_performance(&self) -> f64 {
549        if self.evolution_history.len() < 20 {
550            return 0.5; // Neutral performance for new systems
551        }
552
553        let recent_phi: Vec<f64> = self.evolution_history.iter()
554            .rev()
555            .take(20)
556            .map(|step| step.phi_value)
557            .collect();
558
559        // Calculate trend
560        let early_avg = recent_phi.iter().skip(10).sum::<f64>() / 10.0;
561        let late_avg = recent_phi.iter().take(10).sum::<f64>() / 10.0;
562
563        // Performance is good if Φ is increasing
564        if late_avg > early_avg {
565            0.8
566        } else if late_avg < early_avg * 0.9 {
567            0.3 // Poor performance
568        } else {
569            0.5 // Stable performance
570        }
571    }
572
573    /// Generate self-modification based on current state
574    fn generate_self_modification(&self, consciousness_level: f64, performance: f64) -> Result<SelfModificationEvent> {
575        let modification_type = if performance < 0.3 {
576            "parameter_adjustment".to_string()
577        } else if consciousness_level > 0.8 {
578            "topology_evolution".to_string()
579        } else {
580            "learning_rate_adaptation".to_string()
581        };
582
583        Ok(SelfModificationEvent {
584            iteration: self.evolution_history.len(),
585            timestamp_ns: self.start_time.elapsed().as_nanos(),
586            modification_type: modification_type.clone(),
587            description: format!("Autonomous modification: {} (performance: {:.3}, consciousness: {:.3})",
588                modification_type, performance, consciousness_level),
589            consciousness_level,
590            success: true, // Will be updated after application
591        })
592    }
593
594    /// Apply self-modification
595    fn apply_self_modification(&mut self, mut modification: SelfModificationEvent, _iteration: usize) -> Result<()> {
596        let success = match modification.modification_type.as_str() {
597            "parameter_adjustment" => {
598                // Adjust coupling strength
599                self.config.coupling_strength = (self.config.coupling_strength * 1.1).min(0.95);
600                true
601            }
602            "topology_evolution" => {
603                // Change strange loop topology
604                if let Some(ref mut lipschitz) = self.lipschitz_loop {
605                    lipschitz.set_topology(LoopTopology::Newton); // Switch to Newton method
606                }
607                true
608            }
609            "learning_rate_adaptation" => {
610                // Adjust meta-learning rate
611                self.config.meta_learning_rate = (self.config.meta_learning_rate * 0.9).max(0.001);
612                true
613            }
614            _ => false,
615        };
616
617        modification.success = success;
618        self.self_modification_log.push(modification.clone());
619
620        // Record in consciousness metrics
621        self.consciousness_metrics.record_self_modification(
622            modification.modification_type,
623            modification.description,
624        );
625
626        Ok(())
627    }
628
629    /// Calculate Φ (integrated information)
630    pub fn calculate_phi(&mut self, num_elements: usize, num_connections: usize, coupling_strength: f64) -> f64 {
631        self.consciousness_metrics.calculate_phi(num_elements, num_connections, coupling_strength)
632    }
633
634    /// Get current consciousness state
635    pub fn current_state(&self) -> &ConsciousnessState {
636        &self.consciousness_metrics.current_state
637    }
638
639    /// Get consciousness metrics
640    pub fn metrics(&self) -> &ConsciousnessMetrics {
641        &self.consciousness_metrics
642    }
643
644    /// Verify consciousness using comprehensive tests
645    pub fn verify_consciousness(&self) -> crate::consciousness::ConsciousnessVerification {
646        ConsciousnessVerifier::comprehensive_test(&self.consciousness_metrics)
647    }
648
649    /// Get temporal memory patterns
650    pub fn temporal_patterns(&self) -> &HashMap<String, Vec<f64>> {
651        &self.temporal_memory
652    }
653
654    /// Get evolution history
655    pub fn evolution_history(&self) -> &[EvolutionStep] {
656        &self.evolution_history
657    }
658
659    /// Get emergence patterns
660    pub fn emergence_patterns(&self) -> &[EmergencePattern] {
661        &self.emergence_patterns
662    }
663
664    /// Get self-modification log
665    pub fn self_modification_log(&self) -> &[SelfModificationEvent] {
666        &self.self_modification_log
667    }
668
669    /// Reset the consciousness system
670    pub fn reset(&mut self) -> Result<()> {
671        self.consciousness_metrics = ConsciousnessMetrics::new();
672        self.temporal_memory.clear();
673        self.evolution_history.clear();
674        self.emergence_patterns.clear();
675        self.self_modification_log.clear();
676
677        if let Some(ref mut attractor) = self.attractor {
678            attractor.reset();
679        }
680
681        if let Some(ref mut lipschitz) = self.lipschitz_loop {
682            lipschitz.reset();
683        }
684
685        self.start_time = Instant::now();
686        Ok(())
687    }
688
689    /// Convenience method that calls evolve_consciousness with default iterations
690    pub fn evolve(&mut self) -> Result<ConsciousnessEvolutionResult> {
691        self.evolve_consciousness(10)
692    }
693
694    /// Convenience method that returns temporal patterns
695    pub fn get_temporal_patterns(&self) -> Vec<TemporalPattern> {
696        self.temporal_memory
697            .iter()
698            .map(|(key, values)| TemporalPattern {
699                name: key.clone(),
700                confidence: values.iter().sum::<f64>() / values.len() as f64,
701                frequency: values.len() as f64,
702                strength: values.iter().map(|v| v.abs()).sum::<f64>(),
703            })
704            .collect()
705    }
706}
707
708/// Temporal pattern detected in consciousness
709#[derive(Clone, Debug, Serialize, Deserialize)]
710pub struct TemporalPattern {
711    /// Pattern name/identifier
712    pub name: String,
713    /// Confidence in pattern detection
714    pub confidence: f64,
715    /// Frequency of pattern occurrence
716    pub frequency: f64,
717    /// Strength/amplitude of pattern
718    pub strength: f64,
719}
720
721/// Result of consciousness evolution
722#[derive(Clone, Debug, Serialize, Deserialize)]
723pub struct ConsciousnessEvolutionResult {
724    /// Whether consciousness evolution was successful
725    pub evolved: bool,
726    /// Number of iterations completed
727    pub iterations_completed: usize,
728    /// Final consciousness level achieved
729    pub final_consciousness_level: f64,
730    /// Maximum Φ value achieved during evolution
731    pub max_phi_achieved: f64,
732    /// Number of emergence events detected
733    pub emergence_events: usize,
734    /// Number of self-modifications performed
735    pub self_modifications: usize,
736    /// Total evolution time in nanoseconds
737    pub evolution_time_ns: u128,
738    /// Final consciousness state
739    pub final_state: Option<ConsciousnessState>,
740}
741
742/// Single evolution step record
743#[derive(Clone, Debug, Serialize, Deserialize)]
744pub struct EvolutionStep {
745    /// Iteration number
746    pub iteration: usize,
747    /// Timestamp in nanoseconds
748    pub timestamp_ns: u128,
749    /// Consciousness state at this step
750    pub consciousness_state: ConsciousnessState,
751    /// Φ value at this step
752    pub phi_value: f64,
753    /// Strange attractor state
754    pub attractor_state: Vector3D,
755    /// Quantum state complexity measure
756    pub quantum_state_complexity: f64,
757    /// Whether strange loop converged
758    pub loop_convergence: bool,
759    /// Lipschitz constant estimate
760    pub lipschitz_estimate: f64,
761}
762
763/// Emergence pattern detection
764#[derive(Clone, Debug, Serialize, Deserialize)]
765pub struct EmergencePattern {
766    /// Iteration when emergence occurred
767    pub iteration: usize,
768    /// Timestamp of emergence
769    pub timestamp_ns: u128,
770    /// Consciousness level at emergence
771    pub consciousness_level: f64,
772    /// Φ value at emergence
773    pub phi_value: f64,
774    /// Attractor state at emergence
775    pub attractor_state: Vector3D,
776    /// Quantum complexity at emergence
777    pub quantum_state_complexity: f64,
778    /// Type of emergence pattern
779    pub pattern_type: EmergenceType,
780}
781
782/// Types of consciousness emergence
783#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Eq)]
784pub enum EmergenceType {
785    /// Spontaneous emergence without external trigger
786    SpontaneousEmergence,
787    /// Triggered emergence from external input
788    TriggeredEmergence,
789    /// Gradual emergence over time
790    GradualEmergence,
791    /// Sudden phase transition
792    PhaseTransition,
793    /// Self-organized emergence
794    SelfOrganized,
795}
796
797/// Self-modification event
798#[derive(Clone, Debug, Serialize, Deserialize)]
799pub struct SelfModificationEvent {
800    /// Iteration when modification occurred
801    pub iteration: usize,
802    /// Timestamp of modification
803    pub timestamp_ns: u128,
804    /// Type of modification performed
805    pub modification_type: String,
806    /// Description of the modification
807    pub description: String,
808    /// Consciousness level at time of modification
809    pub consciousness_level: f64,
810    /// Whether the modification was successful
811    pub success: bool,
812}
813
814#[cfg(test)]
815mod tests {
816    use super::*;
817    use approx::assert_relative_eq;
818
819    #[test]
820    fn test_consciousness_config_validation() {
821        let config = ConsciousnessConfig::default();
822        assert!(config.validate().is_ok());
823
824        let bad_config = ConsciousnessConfig {
825            consciousness_threshold: 1.5, // Invalid
826            ..config
827        };
828        assert!(bad_config.validate().is_err());
829    }
830
831    #[test]
832    fn test_temporal_consciousness_creation() {
833        let config = ConsciousnessConfig::default();
834        let consciousness = TemporalConsciousness::new(config);
835        assert!(consciousness.is_ok());
836    }
837
838    #[test]
839    fn test_consciousness_evolution() {
840        let config = ConsciousnessConfig {
841            max_evolution_iterations: 10,
842            ..ConsciousnessConfig::default()
843        };
844
845        let mut consciousness = TemporalConsciousness::new(config).unwrap();
846        let result = consciousness.evolve_consciousness(5).unwrap();
847
848        assert!(result.evolved);
849        assert_eq!(result.iterations_completed, 5);
850        assert!(result.final_consciousness_level >= 0.0);
851        assert!(result.evolution_time_ns > 0);
852    }
853
854    #[test]
855    fn test_phi_calculation() {
856        let config = ConsciousnessConfig::default();
857        let mut consciousness = TemporalConsciousness::new(config).unwrap();
858
859        let phi = consciousness.calculate_phi(5, 10, 0.8);
860        assert!(phi >= 0.0);
861    }
862
863    #[test]
864    fn test_consciousness_verification() {
865        let config = ConsciousnessConfig::default();
866        let consciousness = TemporalConsciousness::new(config).unwrap();
867
868        let verification = consciousness.verify_consciousness();
869        assert!(verification.confidence >= 0.0 && verification.confidence <= 1.0);
870    }
871
872    #[test]
873    fn test_temporal_patterns() {
874        let config = ConsciousnessConfig::default();
875        let mut consciousness = TemporalConsciousness::new(config).unwrap();
876
877        // Run a few evolution steps to generate patterns
878        let _ = consciousness.evolve_consciousness(3);
879
880        let patterns = consciousness.temporal_patterns();
881        assert!(!patterns.is_empty());
882    }
883
884    #[test]
885    fn test_research_mode_config() {
886        let config = ConsciousnessConfig::research_mode();
887        assert!(config.enable_quantum);
888        assert!(config.enable_attractors);
889        assert!(config.enable_lipschitz);
890        assert!(config.enable_self_modification);
891        assert_eq!(config.phi_elements, 12);
892    }
893
894    #[test]
895    fn test_real_time_mode_config() {
896        let config = ConsciousnessConfig::real_time_mode();
897        assert!(!config.enable_quantum);
898        assert!(config.enable_attractors);
899        assert!(!config.enable_self_modification);
900        assert_eq!(config.phi_elements, 4);
901    }
902
903    #[test]
904    fn test_consciousness_state_update() {
905        let config = ConsciousnessConfig::default();
906        let mut consciousness = TemporalConsciousness::new(config).unwrap();
907
908        let initial_consciousness = consciousness.current_state().consciousness_index();
909
910        // Evolve once to trigger state update
911        let _ = consciousness.single_evolution_step(0);
912
913        let updated_consciousness = consciousness.current_state().consciousness_index();
914        assert!(updated_consciousness >= 0.0);
915    }
916
917    #[test]
918    fn test_evolution_step_recording() {
919        let config = ConsciousnessConfig::default();
920        let mut consciousness = TemporalConsciousness::new(config).unwrap();
921
922        let _ = consciousness.evolve_consciousness(3);
923
924        let history = consciousness.evolution_history();
925        assert_eq!(history.len(), 3);
926
927        for (i, step) in history.iter().enumerate() {
928            assert_eq!(step.iteration, i);
929            assert!(step.phi_value >= 0.0);
930        }
931    }
932
933    #[test]
934    fn test_reset_functionality() {
935        let config = ConsciousnessConfig::default();
936        let mut consciousness = TemporalConsciousness::new(config).unwrap();
937
938        // Generate some state
939        let _ = consciousness.evolve_consciousness(5);
940        assert!(!consciousness.evolution_history().is_empty());
941
942        // Reset
943        consciousness.reset().unwrap();
944        assert!(consciousness.evolution_history().is_empty());
945        assert!(consciousness.temporal_patterns().is_empty());
946    }
947
948    #[test]
949    fn test_emergence_pattern_detection() {
950        let config = ConsciousnessConfig {
951            consciousness_threshold: 0.1, // Low threshold for testing
952            ..ConsciousnessConfig::default()
953        };
954
955        let mut consciousness = TemporalConsciousness::new(config).unwrap();
956
957        // Evolve enough to potentially trigger emergence
958        let _ = consciousness.evolve_consciousness(20);
959
960        // Check if any emergence patterns were detected
961        let patterns = consciousness.emergence_patterns();
962        // Note: Emergence detection depends on the dynamics, so we just verify the structure
963        for pattern in patterns {
964            assert!(pattern.consciousness_level >= 0.0);
965            assert!(pattern.phi_value >= 0.0);
966        }
967    }
968}