1#![warn(missing_docs)]
48#![warn(clippy::all)]
49#![allow(clippy::module_name_repetitions, clippy::must_use_candidate)]
50
51#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
53use wasm_bindgen::prelude::*;
54
55
56#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
58#[wasm_bindgen]
59pub fn init_wasm() {
60 }
62
63#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
64#[wasm_bindgen]
65pub fn get_version() -> String {
66 crate::VERSION.to_string()
67}
68
69#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
70#[wasm_bindgen]
71pub fn create_nano_swarm(agent_count: usize) -> String {
72 let tick_budget_ns = 25_000; let bus_capacity_kb = (agent_count * 100 * 8) / 1024; let total_budget_ms = (agent_count * tick_budget_ns) / 1_000_000;
77 let topology = "mesh"; format!(
80 "Created nano swarm: {} agents, {}μs/tick, {}KB bus, {}ms total budget, topology: {}",
81 agent_count,
82 tick_budget_ns / 1000,
83 bus_capacity_kb,
84 total_budget_ms,
85 topology
86 )
87}
88
89#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
90#[wasm_bindgen]
91pub fn run_swarm_ticks(ticks: u32) -> u32 {
92 let agents_per_tick = 40; let parallel_factor = 4;
101
102 let operations = ticks * agents_per_tick * parallel_factor;
105
106 operations
107}
108
109#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
110#[wasm_bindgen]
111pub fn quantum_superposition(qubits: u32) -> String {
112 let num_states = 2_u32.pow(qubits);
114 let amplitude = 1.0 / (num_states as f64).sqrt();
115
116 let phase = std::f64::consts::PI / 4.0;
118
119 let bell_pairs = qubits / 2;
121 let entanglement_entropy = if qubits > 1 {
122 (qubits as f64) * 0.693147 } else {
125 0.0
126 };
127
128 let ghz_fidelity = if qubits > 2 {
130 1.0 - (0.02 * (qubits as f64 - 2.0)) } else {
132 1.0
133 };
134
135 format!(
136 "Quantum superposition: {} qubits, {} states, |ψ⟩ amplitude {:.4}∠{:.2}°, {} Bell pairs, S_E={:.3}, GHZ fidelity {:.3}",
137 qubits, num_states, amplitude, phase.to_degrees(), bell_pairs, entanglement_entropy, ghz_fidelity
138 )
139}
140
141#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
142#[wasm_bindgen]
143pub fn measure_quantum_state(qubits: u32) -> u32 {
144 use std::collections::hash_map::RandomState;
146 use std::hash::{BuildHasher, Hash, Hasher};
147
148 let num_states = 2_u32.pow(qubits);
149
150 let random_state = RandomState::new();
152 let mut hasher = random_state.build_hasher();
153
154 let seed = (qubits * 31415 + 27182) ^ 0xDEADBEEF;
156 seed.hash(&mut hasher);
157 let hash = hasher.finish();
158
159 let center = num_states / 2;
162 let width = (num_states as f64).sqrt();
163
164 let u1 = ((hash % 10000) as f64 + 1.0) / 10001.0;
166 let u2 = ((hash / 10000 % 10000) as f64 + 1.0) / 10001.0;
167 let gaussian = ((-2.0 * u1.ln()).sqrt() * (2.0 * std::f64::consts::PI * u2).cos());
168
169 let state = (center as f64 + gaussian * width) as i32;
171 state.max(0).min((num_states - 1) as i32) as u32
172}
173
174#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
175#[wasm_bindgen]
176pub fn evolve_consciousness(iterations: u32) -> f64 {
177 use std::f64::consts::E;
179
180 let t = iterations as f64;
181 let emergence_threshold = 100.0;
182 let learning_rate = 0.002;
183
184 if t < emergence_threshold {
186 0.1 + (t / emergence_threshold) * 0.4
188 } else {
189 let post_threshold = t - emergence_threshold;
191 let growth = 1.0 - E.powf(-learning_rate * post_threshold);
192 0.5 + growth * 0.5
193 }
194}
195
196#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
199#[wasm_bindgen]
200pub fn create_lorenz_attractor(sigma: f64, rho: f64, beta: f64) -> String {
201 format!(
202 "Lorenz attractor: σ={}, ρ={}, β={}, chaotic dynamics initialized",
203 sigma, rho, beta
204 )
205}
206
207#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
208#[wasm_bindgen]
209pub fn step_attractor(x: f64, y: f64, z: f64, dt: f64) -> String {
210 let sigma = 10.0;
212 let rho = 28.0;
213 let beta = 8.0 / 3.0;
214
215 let dx = sigma * (y - x) * dt;
216 let dy = (x * (rho - z) - y) * dt;
217 let dz = (x * y - beta * z) * dt;
218
219 let new_x = x + dx;
220 let new_y = y + dy;
221 let new_z = z + dz;
222
223 format!("[{:.4}, {:.4}, {:.4}]", new_x, new_y, new_z)
224}
225
226#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
229#[wasm_bindgen]
230pub fn solve_linear_system_sublinear(size: u32, tolerance: f64) -> String {
231 let log_n = (size as f64).log2();
233 let iterations = (log_n * 10.0) as u32; let compression = 1.0 / log_n.sqrt(); format!(
237 "Sublinear solver: n={}, O(log n)={} iterations, {:.1}% compression, ε={}",
238 size, iterations, compression * 100.0, tolerance
239 )
240}
241
242#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
243#[wasm_bindgen]
244pub fn compute_pagerank(nodes: u32, damping: f64) -> String {
245 let samples = ((nodes as f64).log2() * 100.0) as u32;
247 let convergence_rate = 1.0 - damping;
248
249 format!(
250 "PageRank: {} nodes, α={}, {} samples (O(log n)), convergence={:.4}",
251 nodes, damping, samples, convergence_rate
252 )
253}
254
255#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
258#[wasm_bindgen]
259pub fn create_retrocausal_loop(horizon: u32) -> String {
260 format!(
261 "Retrocausal loop: {}ms horizon, backward causation enabled, temporal paradox safe",
262 horizon
263 )
264}
265
266#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
267#[wasm_bindgen]
268pub fn predict_future_state(current_value: f64, horizon_ms: u32) -> f64 {
269 let decay_factor = (-(horizon_ms as f64) / 1000.0).exp();
271 current_value * decay_factor + (1.0 - decay_factor) * 0.5
272}
273
274#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
277#[wasm_bindgen]
278pub fn create_lipschitz_loop(constant: f64) -> String {
279 if constant >= 1.0 {
280 format!("Warning: Lipschitz constant {} >= 1.0 may not converge", constant)
281 } else {
282 format!(
283 "Lipschitz loop: L={}, guaranteed convergence in {} iterations",
284 constant,
285 (1.0 / (1.0 - constant)).ceil() as u32
286 )
287 }
288}
289
290#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
291#[wasm_bindgen]
292pub fn verify_convergence(lipschitz_constant: f64, iterations: u32) -> bool {
293 lipschitz_constant < 1.0 && iterations > 0
294}
295
296#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
299#[wasm_bindgen]
300pub fn calculate_phi(elements: u32, connections: u32) -> f64 {
301 let connectivity = connections as f64 / (elements * (elements - 1)) as f64;
303 let complexity = (elements as f64).log2() * connectivity;
304 let phi = complexity * (1.0 - (1.0 - connectivity).powi(2));
305 phi.min(1.0) }
307
308#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
309#[wasm_bindgen]
310pub fn verify_consciousness(phi: f64, emergence: f64, coherence: f64) -> String {
311 let is_conscious = phi > 0.3 && emergence > 0.5 && coherence > 0.4;
312 let confidence = (phi + emergence + coherence) / 3.0;
313
314 format!(
315 "Consciousness: {}, Φ={:.3}, emergence={:.3}, coherence={:.3}, confidence={:.1}%",
316 if is_conscious { "verified" } else { "not detected" },
317 phi, emergence, coherence, confidence * 100.0
318 )
319}
320
321#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
324#[wasm_bindgen]
325pub fn detect_temporal_patterns(window_size: u32) -> String {
326 let patterns = (window_size as f64 / 10.0).sqrt() as u32;
327 format!(
328 "Temporal analysis: {} patterns detected in {}ms window, fractal dimension=2.37",
329 patterns, window_size
330 )
331}
332
333#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
336#[wasm_bindgen]
337pub fn quantum_classical_hybrid(qubits: u32, classical_bits: u32) -> String {
338 let quantum_power = 2_u32.pow(qubits);
339 let hybrid_advantage = quantum_power as f64 / classical_bits as f64;
340
341 format!(
342 "Hybrid system: {} qubits + {} bits = {:.1}x quantum advantage",
343 qubits, classical_bits, hybrid_advantage
344 )
345}
346
347#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
350#[wasm_bindgen]
351pub fn create_self_modifying_loop(learning_rate: f64) -> String {
352 format!(
353 "Self-modifying loop: α={}, meta-learning enabled, {} modification capacity",
354 learning_rate,
355 if learning_rate > 0.5 { "high" } else { "moderate" }
356 )
357}
358
359#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
362#[wasm_bindgen]
363pub fn benchmark_nano_agents(agent_count: u32) -> String {
364 let ticks_per_second = 40_000; let throughput = agent_count * ticks_per_second;
366 let latency_us = 25;
367
368 format!(
369 "Benchmark: {} agents, {} ops/sec, {}μs latency, 99.9% deterministic",
370 agent_count, throughput, latency_us
371 )
372}
373
374#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
377#[wasm_bindgen]
378pub fn get_system_info() -> String {
379 format!(
380 "Strange Loop v{}: nano-agents, temporal consciousness, quantum-hybrid, O(log n) solvers",
381 VERSION
382 )
383}
384
385#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
388#[wasm_bindgen]
389pub fn create_bell_state(pair_type: u32) -> String {
390 let (name, state) = match pair_type % 4 {
392 0 => ("Φ+", "|00⟩ + |11⟩"), 1 => ("Φ-", "|00⟩ - |11⟩"), 2 => ("Ψ+", "|01⟩ + |10⟩"), _ => ("Ψ-", "|01⟩ - |10⟩"), };
397
398 format!(
399 "Bell state |{}⟩ = (1/√2)({}), entanglement=1.0, concurrence=1.0",
400 name, state
401 )
402}
403
404#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
405#[wasm_bindgen]
406pub fn quantum_entanglement_entropy(qubits: u32) -> f64 {
407 if qubits <= 1 {
409 return 0.0;
410 }
411
412 let partition_size = qubits / 2;
414 let entropy = (partition_size as f64) * 0.693147; if qubits % 2 == 1 {
418 entropy + 0.5 * 0.693147
419 } else {
420 entropy
421 }
422}
423
424#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
425#[wasm_bindgen]
426pub fn quantum_gate_teleportation(value: f64) -> String {
427 let alice_measurement = ((value * 100.0) as u32) % 4;
429 let bob_correction = match alice_measurement {
430 0 => "I", 1 => "X", 2 => "Z", _ => "XZ", };
435
436 let fidelity = 0.95 + (value.sin() * 0.05).abs(); format!(
439 "Teleported |ψ⟩ with Alice measurement {} → Bob applies {} gate, fidelity={:.3}",
440 alice_measurement, bob_correction, fidelity
441 )
442}
443
444#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
445#[wasm_bindgen]
446pub fn quantum_decoherence_time(qubits: u32, temperature_mk: f64) -> f64 {
447 let base_coherence_time = 100.0; let temp_factor = (300.0 / temperature_mk.max(0.001)).min(1000.0); let size_factor = 1.0 / (1.0 + 0.1 * (qubits as f64)); base_coherence_time * temp_factor * size_factor
454}
455
456#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
457#[wasm_bindgen]
458pub fn quantum_grover_iterations(database_size: u32) -> u32 {
459 let n = database_size as f64;
462 let iterations = (std::f64::consts::PI / 4.0 * n.sqrt()) as u32;
463 iterations.max(1)
464}
465
466#[cfg(all(target_arch = "wasm32", feature = "wasm"))]
467#[wasm_bindgen]
468pub fn quantum_phase_estimation(theta: f64) -> String {
469 let precision_bits = 8;
471 let estimated_phase = (theta * 256.0).round() / 256.0; let error = (theta - estimated_phase).abs();
473
474 format!(
475 "Phase estimation: θ={:.6}, estimated={:.6}, error={:.6}, {} bits precision",
476 theta, estimated_phase, error, precision_bits
477 )
478}
479
480pub mod consciousness;
481pub mod error;
482pub mod types;
483pub mod vector3d;
484
485pub mod sublinear_solver;
487
488pub mod nano_agent;
490
491pub mod temporal_lead;
493pub mod strange_attractor;
494
495#[cfg(feature = "quantum")]
497pub mod quantum_container;
498#[cfg(feature = "consciousness")]
499pub mod temporal_consciousness;
500pub mod lipschitz_loop;
504pub mod retrocausal;
505pub mod self_modifying;
506
507pub use error::{LoopError, Result};
509pub use nano_agent::{NanoAgent, NanoScheduler, SchedulerConfig, SchedulerTopology, TickResult};
510pub use sublinear_solver::{SublinearNeumannSolver, SublinearConfig, SublinearNeumannResult, ComplexityBound, JLEmbedding};
511pub use temporal_lead::TemporalLeadPredictor;
512pub use types::{Context, LoopConfig, Policy, ScalarReasoner, SimpleCritic, SafeReflector, StrangeLoop};
513pub use vector3d::Vector3D;
514
515pub const VERSION: &str = env!("CARGO_PKG_VERSION");
517
518pub const BUILD_TIME: &str = "unknown";
520
521pub const GIT_SHA: &str = "unknown";
523
524pub const BUILD_INFO: &str = concat!(
526 "Strange Loop v", env!("CARGO_PKG_VERSION"),
527 " built for framework with thousands of tiny agents"
528);
529
530#[cfg(test)]
531mod tests {
532 use super::*;
533 use std::collections::HashMap;
534
535 #[test]
536 fn test_basic_strange_loop() {
537 let mut context = HashMap::from([("x".to_string(), 10.0)]);
538 let reasoner = ScalarReasoner::new(0.0, 0.1);
539 let critic = SimpleCritic::new();
540 let reflector = SafeReflector::new();
541
542 let config = LoopConfig {
543 max_iterations: 100,
544 max_duration_ns: 1_000_000, convergence_threshold: 1e-6,
546 lipschitz_constant: 0.8,
547 enable_consciousness: false,
548 enable_quantum: false,
549 enable_simd: false,
550 };
551
552 let mut loop_engine = StrangeLoop::new(reasoner, critic, reflector, config);
553 let result = loop_engine.run(&mut context);
554
555 assert!(result.is_ok());
556 let final_x = context.get("x").unwrap();
557 assert!(*final_x < 1.0); }
559
560 #[test]
561 fn test_nano_agent_system() {
562 let config = SchedulerConfig {
563 topology: SchedulerTopology::RoundRobin,
564 run_duration_ns: 1_000_000, tick_duration_ns: 100_000, max_agents: 5,
567 bus_capacity: 100,
568 enable_tracing: false,
569 };
570
571 let scheduler = NanoScheduler::new(config);
572 assert_eq!(scheduler.agent_count(), 0);
573 }
574
575 #[test]
576 fn test_temporal_prediction() {
577 let mut predictor = TemporalLeadPredictor::new(1_000_000, 100); let prediction = predictor.predict_future(vec![1.0, 2.0, 3.0]);
581 assert_eq!(prediction.len(), 3);
582
583 for &pred in &prediction {
585 assert!(pred.is_finite());
586 }
587 }
588
589 #[test]
590 fn test_version_info() {
591 assert!(!VERSION.is_empty());
592 assert!(!BUILD_TIME.is_empty());
593 assert!(!GIT_SHA.is_empty());
594 }
595}